oscillatory stability
简明释义
振荡稳定性
英英释义
例句
1.The research focused on the oscillatory stability 振荡稳定性 of the control system in robotic applications.
该研究专注于机器人应用中控制系统的振荡稳定性。
2.The oscillatory stability 振荡稳定性 of the pendulum was tested under various gravitational conditions.
摆的振荡稳定性在不同重力条件下进行了测试。
3.The team conducted simulations to assess the oscillatory stability 振荡稳定性 of the proposed structure under dynamic loads.
团队进行了模拟,以评估所提议结构在动态载荷下的振荡稳定性。
4.In fluid dynamics, achieving oscillatory stability 振荡稳定性 is crucial for maintaining consistent flow patterns.
在流体动力学中,实现振荡稳定性对于保持一致的流动模式至关重要。
5.Engineers must ensure oscillatory stability 振荡稳定性 when designing feedback loops for electronic circuits.
工程师在设计电子电路的反馈回路时必须确保振荡稳定性。
作文
In the realm of control systems and dynamic analysis, the concept of oscillatory stability plays a crucial role in determining the behavior of systems subjected to various inputs. Essentially, oscillatory stability refers to the ability of a system to return to equilibrium after being disturbed, while exhibiting oscillations around that equilibrium point. This characteristic is particularly important in engineering applications, where systems must not only stabilize but do so in a manner that avoids excessive oscillations that could lead to failure or inefficiency.To understand oscillatory stability, one must first consider the fundamental principles of stability in dynamic systems. Stability generally implies that when a system is perturbed from its equilibrium state, it will eventually return to that state rather than diverging away from it. However, in many practical scenarios, especially in mechanical and electrical systems, this return to equilibrium can involve oscillatory motion. For example, consider a pendulum: if pushed, it swings back and forth before settling down. The nature of these oscillations—how quickly they diminish and whether they grow larger or smaller—is indicative of the system's oscillatory stability.One of the key aspects of oscillatory stability is the damping ratio, which quantifies how oscillations decay over time. A system with a high damping ratio tends to stabilize quickly without excessive oscillation, while a low damping ratio may result in prolonged oscillations that can be problematic. Engineers often aim for an optimal damping ratio to achieve desired performance characteristics in systems ranging from automotive suspensions to electronic circuits.Moreover, oscillatory stability also has implications in various fields such as economics, biology, and even climate science. For instance, in economic models, oscillatory stability can describe how markets react to shocks, leading to cyclical behaviors. In biological systems, it can illustrate population dynamics where species oscillate around a carrying capacity. Understanding these oscillations can help in making predictions and implementing strategies to manage complex systems effectively.In conclusion, the concept of oscillatory stability is vital for analyzing and designing systems across multiple disciplines. It encompasses not only the ability to return to equilibrium but also the manner in which this return occurs, highlighting the importance of controlling oscillations. As technology continues to advance, the need for robust systems that exhibit desirable oscillatory stability will remain paramount, ensuring safety, efficiency, and reliability in our increasingly complex world.
在控制系统和动态分析的领域中,振荡稳定性的概念在确定系统在各种输入下的行为方面发挥着至关重要的作用。基本上,振荡稳定性指的是一个系统在受到干扰后能够返回到平衡状态的能力,同时围绕该平衡点表现出振荡。这一特性在工程应用中尤为重要,因为系统不仅必须稳定,还必须以避免过度振荡的方式实现稳定,以免导致故障或低效。要理解振荡稳定性,首先必须考虑动态系统稳定性的基本原理。稳定性通常意味着当一个系统从其平衡状态受到扰动时,它最终会返回到该状态,而不是偏离它。然而,在许多实际场景中,尤其是在机械和电气系统中,这种返回平衡的过程可能涉及振荡运动。例如,考虑一个摆:如果被推,它会来回摆动,然后逐渐停下来。这些振荡的性质——它们衰减的速度以及是变大还是变小——表明了系统的振荡稳定性。振荡稳定性的一个关键方面是阻尼比,它量化了振荡随时间衰减的程度。具有高阻尼比的系统往往能够快速稳定,而没有过多的振荡,而低阻尼比则可能导致持续的振荡,这可能是个问题。工程师通常会追求最佳的阻尼比,以在从汽车悬架到电子电路的系统中实现所需的性能特征。此外,振荡稳定性在经济学、生物学甚至气候科学等多个领域也有着重要的意义。例如,在经济模型中,振荡稳定性可以描述市场对冲击的反应,从而导致周期性行为。在生物系统中,它可以阐明种群动态,其中物种围绕承载能力振荡。理解这些振荡可以帮助我们做出预测并实施有效管理复杂系统的策略。总之,振荡稳定性的概念对于分析和设计多个学科的系统至关重要。它不仅涵盖了返回平衡的能力,还强调了这种返回发生的方式,突显了控制振荡的重要性。随着技术的不断进步,对展现良好振荡稳定性的强健系统的需求将保持重要,以确保在我们日益复杂的世界中实现安全、高效和可靠。
相关单词