neutral trapping center
简明释义
中性俘获中心
英英释义
例句
1.In photonic devices, neutral trapping centers 中性捕获中心 can lead to increased losses due to non-radiative recombination.
在光子设备中,neutral trapping centers 中性捕获中心可能导致由于非辐射复合而增加的损失。
2.The simulation showed that neutral trapping centers 中性捕获中心 could significantly affect carrier lifetime.
模拟显示,neutral trapping centers 中性捕获中心会显著影响载流子寿命。
3.The research team discovered a new type of defect in the semiconductor that acted as a neutral trapping center 中性捕获中心, affecting its electrical properties.
研究小组发现半导体中一种新的缺陷,它作为一个neutral trapping center 中性捕获中心,影响了其电气特性。
4.To improve device performance, engineers are working on reducing the density of neutral trapping centers 中性捕获中心 in the substrate.
为了提高设备性能,工程师们正在努力减少基底中neutral trapping centers 中性捕获中心的密度。
5.The presence of neutral trapping centers 中性捕获中心 in the material was confirmed through photoluminescence studies.
通过光致发光研究确认材料中存在neutral trapping centers 中性捕获中心。
作文
In the field of materials science and semiconductor physics, the concept of a neutral trapping center is crucial for understanding charge carrier dynamics. A neutral trapping center refers to a defect or impurity in a semiconductor that can capture and hold charge carriers without introducing additional charge. This characteristic plays a significant role in determining the electrical properties of the material. When charge carriers, such as electrons or holes, encounter these centers, they can become temporarily trapped, which affects the overall conductivity of the semiconductor. The presence of neutral trapping centers can lead to a variety of phenomena in semiconductor devices. For instance, in photoconductive materials, these centers can influence the material's response to light by affecting how quickly charge carriers recombine. If the trapping centers are present in high concentrations, they can significantly reduce the efficiency of devices like solar cells or photodetectors by prolonging the recombination time of charge carriers. Moreover, the energy levels associated with neutral trapping centers are typically located within the bandgap of the semiconductor. This positioning allows them to interact with the conduction band and valence band, facilitating the capture of charge carriers. The depth of these energy levels can determine how effectively the centers trap carriers. Shallow levels may lead to quick release of the trapped carriers, while deeper levels may hold them for longer periods, impacting device performance.Understanding the behavior of neutral trapping centers is essential for optimizing semiconductor materials for various applications. Researchers often conduct experiments to characterize these defects and their impact on material properties. Techniques such as deep-level transient spectroscopy (DLTS) are commonly employed to study the energy levels and capture cross-sections of these trapping centers. By analyzing the data obtained from such techniques, scientists can develop strategies to minimize the adverse effects of neutral trapping centers in device fabrication.In conclusion, neutral trapping centers are a fundamental aspect of semiconductor physics, influencing the behavior of charge carriers and the overall performance of electronic devices. As technology advances, the need for high-efficiency materials becomes increasingly important. Therefore, a deeper understanding of neutral trapping centers will aid in the development of next-generation semiconductor technologies, paving the way for more efficient electronic and optoelectronic devices. By addressing the challenges posed by these trapping centers, researchers can enhance the functionality and performance of devices, ultimately contributing to technological progress and innovation in the field of electronics.
在材料科学和半导体物理领域,中性捕获中心的概念对于理解载流子动力学至关重要。中性捕获中心是指半导体中的缺陷或杂质,可以在不引入额外电荷的情况下捕获和保持载流子。这一特性在决定材料的电气性质方面发挥着重要作用。当载流子(如电子或空穴)遇到这些中心时,它们可能会被暂时捕获,从而影响半导体的整体导电性。中性捕获中心的存在可能导致半导体器件中出现多种现象。例如,在光导材料中,这些中心可以通过影响载流子的复合速度来影响材料对光的响应。如果捕获中心的浓度很高,它们可能会显著降低太阳能电池或光探测器等设备的效率,因为它们延长了载流子的复合时间。此外,与中性捕获中心相关的能级通常位于半导体的带隙内。这种位置使得它们能够与导带和价带相互作用,促进载流子的捕获。这些能级的深度可以决定捕获中心捕获载流子的有效性。浅能级可能导致被捕获的载流子迅速释放,而深能级可能会更长时间地保持它们,从而影响器件性能。理解中性捕获中心的行为对于优化各种应用的半导体材料至关重要。研究人员通常进行实验以表征这些缺陷及其对材料性质的影响。深能级瞬态光谱(DLTS)等技术常用于研究这些捕获中心的能级和捕获截面。通过分析从这些技术获得的数据,科学家可以制定策略,以最小化在器件制造中由中性捕获中心造成的不利影响。总之,中性捕获中心是半导体物理的基本方面,影响载流子的行为和电子器件的整体性能。随着技术的发展,对高效材料的需求变得越来越重要。因此,更深入地理解中性捕获中心将有助于开发下一代半导体技术,为更高效的电子和光电器件铺平道路。通过解决这些捕获中心带来的挑战,研究人员可以增强器件的功能和性能,最终为电子领域的技术进步和创新做出贡献。
相关单词