miller indices
简明释义
密勒指数
英英释义
Miller indices are a notation system in crystallography for identifying the orientation of crystal planes and directions in a crystal lattice. | 米勒指数是晶体学中的一种标记系统,用于识别晶体格子中晶面和方向的取向。 |
例句
1.In X-ray diffraction, the peaks correspond to specific Miller indices.
在X射线衍射中,峰值对应于特定的米勒指数。
2.Each plane in a crystal lattice can be represented by its Miller indices.
晶格中的每个平面都可以用其米勒指数表示。
3.The crystal structure can be analyzed using Miller indices.
可以使用米勒指数来分析晶体结构。
4.The Miller indices for the (100) plane indicate a simple cubic structure.
(100)平面的米勒指数表明这是一个简单立方结构。
5.To determine the orientation of a crystal face, we use Miller indices.
为了确定晶体面的方向,我们使用米勒指数。
作文
In the field of crystallography, the concept of Miller indices plays a crucial role in describing the orientation of crystal planes. These indices provide a systematic way to denote the different planes in a crystal lattice, which is essential for understanding various properties of materials. The Miller indices are represented by three integers, typically denoted as (hkl), which correspond to the intercepts that a plane makes with the axes of the crystal lattice. Each integer in the set represents the reciprocal of the fractional intercepts that the plane makes with the axes, and they are derived through a specific set of rules. To better understand Miller indices, one must first grasp the concept of a crystal lattice itself. A crystal lattice is a three-dimensional arrangement of atoms or molecules in a repeating pattern. When we consider a specific plane within this lattice, we can analyze its orientation and position relative to the axes. The Miller indices serve as a shorthand notation to convey this information succinctly. For instance, if a plane intersects the x-axis at 1, the y-axis at 2, and the z-axis at infinity, the corresponding Miller indices would be (122). The significance of Miller indices extends beyond mere identification; they also have implications for the physical properties of materials. Different orientations of planes can influence how a material responds to external forces, such as stress or thermal changes. For example, in metallurgy, understanding the Miller indices can help in predicting how a metal will deform under load, which is vital for engineering applications. Similarly, in the field of semiconductors, the orientation of crystal planes affects electronic properties, making Miller indices essential for designing devices like transistors and diodes. Moreover, Miller indices are not limited to just three dimensions. In more complex structures, such as those found in non-cubic crystals, the concept can be extended to include additional indices. This versatility allows scientists and engineers to communicate effectively about various crystalline materials across different fields. In conclusion, the understanding of Miller indices is fundamental for anyone working in materials science, chemistry, or physics. By providing a clear and concise method for describing crystal planes, Miller indices facilitate the exploration of material properties and behaviors. As research continues to advance, the importance of these indices will only grow, further solidifying their place in the study of crystallography and related disciplines.
在晶体学领域,Miller indices 的概念在描述晶面方向方面起着至关重要的作用。这些指标提供了一种系统的方法来表示晶格中的不同平面,这对于理解材料的各种属性至关重要。Miller indices 由三个整数表示,通常表示为 (hkl),它们对应于平面与晶格轴的截距。该组中的每个整数代表平面与轴所形成的分数截距的倒数,并通过一套特定的规则得出。要更好地理解 Miller indices,首先必须掌握晶格本身的概念。晶格是原子或分子在重复模式中三维排列的结构。当我们考虑这个晶格中的特定平面时,我们可以分析其相对于轴的方向和位置。Miller indices 作为一种简写符号,简洁地传达了这些信息。例如,如果一个平面在 x 轴上截距为 1,y 轴上截距为 2,而 z 轴上截距为无穷大,那么相应的 Miller indices 将是 (122)。Miller indices 的重要性不仅限于简单的识别;它们还对材料的物理性质产生影响。不同平面的取向会影响材料如何响应外部力,例如应力或热变化。例如,在冶金学中,理解 Miller indices 有助于预测金属在负载下的变形,这对工程应用至关重要。同样,在半导体领域,晶面取向影响电子特性,使 Miller indices 对设计晶体管和二极管等器件至关重要。此外,Miller indices 不仅限于三维。在更复杂的结构中,例如在非立方晶体中,可以扩展此概念以包括额外的指标。这种多功能性使科学家和工程师能够有效地交流不同领域的各种晶体材料。总之,理解 Miller indices 对于任何从事材料科学、化学或物理学的人来说都是基础。通过提供一种清晰简洁的方法来描述晶面,Miller indices 促进了对材料性质和行为的探索。随着研究的不断推进,这些指标的重要性只会增加,进一步巩固它们在晶体学及相关学科研究中的地位。
相关单词