maser oscillator

简明释义

脉泽振荡器

英英释义

A maser oscillator is a device that amplifies microwave signals through stimulated emission of radiation, typically using a medium such as gas or crystal.

微波放大振荡器是一种通过受激辐射发射放大微波信号的装置,通常使用气体或晶体作为介质。

例句

1.In quantum computing, a maser oscillator 微波放大器振荡器 can be used to stabilize qubit states.

在量子计算中,可以使用maser oscillator 微波放大器振荡器来稳定量子比特状态。

2.Engineers are exploring the use of a maser oscillator 微波放大器振荡器 for deep space communication.

工程师们正在探索将maser oscillator 微波放大器振荡器用于深空通信的可能性。

3.The maser oscillator 微波放大器振荡器 emits coherent microwave radiation, which is crucial for many scientific experiments.

maser oscillator 微波放大器振荡器发出相干微波辐射,这对许多科学实验至关重要。

4.The precision of the maser oscillator 微波放大器振荡器 makes it ideal for timekeeping applications.

由于其精确性,maser oscillator 微波放大器振荡器非常适合用于计时应用。

5.The research team developed a new type of maser oscillator 微波放大器振荡器 that operates at higher frequencies.

研究团队开发了一种新型的maser oscillator 微波放大器振荡器,其工作频率更高。

作文

In the realm of modern physics and engineering, the term maser oscillator refers to a device that generates coherent electromagnetic waves through stimulated emission of radiation. The concept of a maser oscillator was first introduced in the 1950s and has since become a fundamental component in various technologies, including telecommunications, radar, and atomic clocks. Understanding how a maser oscillator works is essential for anyone interested in the fields of quantum mechanics and wave generation.A maser oscillator operates on the principle of stimulated emission, which is a process where an incoming photon stimulates an excited atom or molecule to emit a second photon. This emitted photon has the same phase, frequency, and direction as the incoming photon, leading to a coherent beam of light. Unlike lasers, which typically operate in the optical range, maser oscillators work primarily in the microwave region of the electromagnetic spectrum. This distinction is crucial because it determines the applications and functionalities of these devices.The construction of a maser oscillator involves a gain medium, which can be a gas, liquid, or solid that contains atoms or molecules capable of being excited to higher energy levels. Common materials used in maser oscillators include ammonia and rubidium. When energy is supplied to the gain medium, such as through electrical discharge or pumping, the atoms become excited. Once a sufficient population of excited atoms is achieved, the stimulated emission process can commence, resulting in the amplification of microwaves.One of the most notable applications of maser oscillators is in the field of telecommunications. They are used in satellite communication systems, where precise timing and frequency stability are crucial. The ability of a maser oscillator to maintain a stable frequency over long periods makes it an invaluable tool in synchronizing signals between satellites and ground stations. Furthermore, maser oscillators are also employed in deep-space communication, where maintaining signal integrity over vast distances is of utmost importance.Another significant application of maser oscillators is in atomic clocks. These clocks rely on the oscillations produced by maser oscillators to measure time with extraordinary precision. The accuracy of atomic clocks has profound implications for global positioning systems (GPS), telecommunications, and scientific research. By utilizing the stable frequencies generated by maser oscillators, scientists can ensure that timekeeping remains consistent and reliable.In conclusion, the maser oscillator is a pivotal invention that has revolutionized various scientific and technological fields. Its ability to produce coherent microwave radiation through stimulated emission has led to advancements in telecommunications, precision timekeeping, and even fundamental research in quantum mechanics. As technology continues to evolve, the significance of maser oscillators will likely grow, paving the way for new innovations and applications that we have yet to imagine. Understanding the principles and applications of the maser oscillator is not only important for physicists and engineers but also for anyone who wishes to grasp the intricacies of modern technology and its underlying physics.

在现代物理和工程领域,术语微波放大器振荡器指的是一种通过辐射的受激发射产生相干电磁波的装置。微波放大器振荡器的概念最早是在20世纪50年代提出的,并且自那时以来,它已成为各种技术的基本组成部分,包括电信、雷达和原子钟。了解微波放大器振荡器的工作原理对于任何对量子力学和波生成感兴趣的人来说都是至关重要的。微波放大器振荡器的工作原理基于受激发射的原理,这是一个过程,其中入射光子刺激激发的原子或分子发射第二个光子。这个发射的光子与入射光子具有相同的相位、频率和方向,从而导致一束相干光。与通常在光学范围内工作的激光不同,微波放大器振荡器主要在电磁波谱的微波区域工作。这一点至关重要,因为它决定了这些设备的应用和功能。微波放大器振荡器的构造涉及一个增益介质,这可以是包含能够被激发到更高能级的原子或分子的气体、液体或固体。常用的材料包括氨气和铷。当通过电放电或泵浦等方式向增益介质提供能量时,原子会变得激发。一旦达到足够数量的激发原子,受激发射过程就可以开始,从而导致微波的放大。微波放大器振荡器最显著的应用之一是在电信领域。它们用于卫星通信系统,在这些系统中,精确的时序和频率稳定性至关重要。微波放大器振荡器保持长期稳定频率的能力使其成为同步卫星与地面站信号的重要工具。此外,微波放大器振荡器还用于深空通信,在那里维持信号完整性在广阔的距离上尤为重要。微波放大器振荡器的另一个重要应用是在原子钟中。这些钟依赖于由微波放大器振荡器产生的振荡来极其精确地测量时间。原子钟的准确性对全球定位系统(GPS)、电信和科学研究有深远的影响。通过利用微波放大器振荡器产生的稳定频率,科学家可以确保计时保持一致和可靠。总之,微波放大器振荡器是一项关键的发明,它彻底改变了各种科学和技术领域。它通过受激发射产生相干微波辐射的能力推动了电信、精密计时和甚至量子力学基础研究的进步。随着技术的不断发展,微波放大器振荡器的重要性可能会增长,为我们尚未想象的新创新和应用铺平道路。理解微波放大器振荡器的原理和应用不仅对物理学家和工程师很重要,而且对任何希望掌握现代技术及其基础物理学复杂性的人来说也是如此。

相关单词

maser

maser详解:怎么读、什么意思、用法

oscillator

oscillator详解:怎么读、什么意思、用法