magnetic confinement of plasma

简明释义

等离子区的磁密封

英英释义

Magnetic confinement of plasma refers to the use of magnetic fields to contain and stabilize a plasma, which is a state of matter consisting of charged particles, for the purpose of achieving controlled nuclear fusion or other applications.

等离子体的磁约束是指利用磁场来限制和稳定等离子体(由带电粒子组成的一种物质状态),以实现受控核聚变或其他应用的目的。

例句

1.The researchers are studying the effectiveness of magnetic confinement of plasma in sustaining nuclear fusion reactions.

研究人员正在研究等离子体的磁约束在维持核聚变反应中的有效性。

2.Scientists are exploring new materials to improve the magnetic confinement of plasma systems.

科学家们正在探索新材料以改善等离子体的磁约束系统。

3.The ITER project aims to demonstrate the feasibility of magnetic confinement of plasma for large-scale energy production.

国际热核聚变实验堆(ITER)项目旨在证明等离子体的磁约束在大规模能源生产中的可行性。

4.Advancements in magnetic confinement of plasma technology could lead to cleaner energy sources.

等离子体的磁约束技术上的进步可能会导致更清洁的能源来源。

5.The magnetic confinement of plasma is crucial for achieving the conditions necessary for fusion.

等离子体的磁约束对于实现核聚变所需的条件至关重要。

作文

The quest for sustainable and clean energy sources has led scientists to explore various methods of harnessing the power of fusion. One promising approach is the magnetic confinement of plasma, a technique that aims to replicate the processes occurring in the sun. In essence, fusion involves fusing light atomic nuclei to form heavier ones, releasing vast amounts of energy in the process. However, achieving the conditions necessary for fusion on Earth requires overcoming significant challenges, particularly in containing the extremely hot plasma that is generated during the reaction.Plasma, often referred to as the fourth state of matter, consists of ionized gases with free-moving charged particles. At temperatures exceeding millions of degrees Celsius, atoms lose their electrons, resulting in a soup of ions and electrons. This state is essential for fusion reactions, but it poses a unique challenge: how to keep this hot plasma stable and contained without allowing it to touch the walls of the containment vessel. This is where the magnetic confinement of plasma comes into play.The principle behind magnetic confinement of plasma is relatively straightforward. By using powerful magnetic fields, scientists can create a magnetic cage that holds the plasma in place. The most common devices used for this purpose are tokamaks and stellarators. Tokamaks utilize a combination of toroidal (doughnut-shaped) magnetic fields and additional poloidal (vertical) fields to stabilize the plasma. Stellarators, on the other hand, use twisted magnetic fields to achieve a similar effect without the need for a large electrical current running through the plasma itself.One of the key advantages of magnetic confinement of plasma is its ability to maintain high temperatures and pressures necessary for fusion. The magnetic fields can effectively isolate the hot plasma from the cooler walls of the containment vessel, preventing energy loss and maintaining the conditions required for fusion to occur. This method also allows for continuous operation, which is essential for practical energy production.However, there are still significant hurdles to overcome in the development of magnetic confinement of plasma technology. One major challenge is achieving sufficient confinement times and plasma stability. Researchers must ensure that the plasma remains stable long enough for fusion reactions to take place and produce more energy than is consumed in the process. Additionally, the materials used in constructing the containment vessel must withstand extreme temperatures and radiation levels without degrading over time.Despite these challenges, advancements in magnetic confinement of plasma research continue to progress. International collaborations, such as the ITER project in France, aim to demonstrate the feasibility of fusion as a viable energy source. By pooling resources and expertise from around the world, scientists are making strides toward developing a working fusion reactor that utilizes magnetic confinement of plasma techniques.In conclusion, the magnetic confinement of plasma represents a critical area of research in the pursuit of clean and sustainable energy. By mimicking the processes of the sun, scientists hope to unlock the potential of fusion energy, providing a nearly limitless source of power for future generations. As research continues to advance, the dream of harnessing the power of the stars may soon become a reality, transforming the way we generate and consume energy on our planet.

可持续和清洁能源的探索促使科学家们研究多种利用核聚变能量的方法。其中一种有前景的方法是等离子体的磁约束,该技术旨在复制太阳内部发生的过程。简而言之,聚变涉及将轻原子核融合成更重的原子核,并在此过程中释放出大量能量。然而,在地球上实现聚变所需的条件需要克服重大挑战,特别是在如何控制反应过程中产生的极热等离子体。等离子体通常被称为物质的第四种状态,由带电粒子自由移动的电离气体组成。在超过数百万摄氏度的高温下,原子失去电子,从而形成离子和电子的混合物。这种状态对聚变反应至关重要,但也带来了独特的挑战:如何保持这种高温等离子体的稳定性,并将其限制在不接触容器壁的范围内。这就是等离子体的磁约束发挥作用的地方。等离子体的磁约束的原理相对简单。通过使用强大的磁场,科学家可以创建一个磁笼,将等离子体固定在适当的位置。用于此目的的最常见设备是托卡马克和恒星器。托卡马克利用环形(甜甜圈形状)磁场和额外的经向(垂直)磁场的组合来稳定等离子体。另一方面,恒星器则使用扭曲的磁场来实现类似的效果,而无需通过等离子体本身流动的大电流。等离子体的磁约束的一个主要优势是它能够维持聚变所需的高温和高压。磁场可以有效地将热等离子体与冷却的容器壁隔离,防止能量损失并保持聚变发生所需的条件。这种方法还允许连续操作,这对于实际能源生产至关重要。然而,在等离子体的磁约束技术的发展中仍然存在显著的障碍。一大挑战是实现足够的约束时间和等离子体稳定性。研究人员必须确保等离子体保持稳定,足够长的时间以便聚变反应发生并产生比消耗更多的能量。此外,构建容器壁所用的材料必须能够承受极端的温度和辐射水平,而不会随着时间的推移而降解。尽管面临这些挑战,等离子体的磁约束研究的进展依然在继续。国际合作项目,如位于法国的国际热核聚变实验堆(ITER),旨在证明聚变作为可行能源来源的可行性。通过汇聚来自世界各地的资源和专业知识,科学家们正在朝着开发利用等离子体的磁约束技术的工作聚变反应堆迈进。总之,等离子体的磁约束代表了在追求清洁和可持续能源方面的关键研究领域。通过模仿太阳的过程,科学家们希望解锁聚变能量的潜力,为未来几代人提供几乎无限的电力来源。随着研究的不断进展,利用星星的力量的梦想可能很快就会成为现实,改变我们在地球上产生和消费能源的方式。

相关单词

magnetic

magnetic详解:怎么读、什么意思、用法

plasma

plasma详解:怎么读、什么意思、用法