low temperature epitaxy

简明释义

低温外延

英英释义

Low temperature epitaxy refers to a technique used in the growth of crystalline layers on a substrate at lower temperatures than traditional methods, which typically allows for better control of material properties and reduced defects.

低温外延生长是指在低于传统方法的温度下,在基材上生长晶体层的技术,这通常可以更好地控制材料性能并减少缺陷。

例句

1.In the fabrication of lasers, low temperature epitaxy plays a crucial role in achieving optimal performance.

在激光器的制造中,低温外延生长在实现最佳性能方面起着至关重要的作用。

2.The researchers utilized low temperature epitaxy to grow high-quality semiconductor layers for their experiments.

研究人员利用低温外延生长技术生长高质量的半导体层用于实验。

3.The team investigated the effects of low temperature epitaxy on the electrical properties of the materials.

团队研究了低温外延生长对材料电气特性的影响。

4.Using low temperature epitaxy, they were able to produce defect-free films that are essential for optoelectronic devices.

通过使用低温外延生长,他们能够生产出无缺陷的薄膜,这对于光电设备至关重要。

5.The application of low temperature epitaxy in quantum dot fabrication has opened new avenues for research.

低温外延生长在量子点制造中的应用为研究开辟了新的途径。

作文

Low temperature epitaxy, or 低温外延生长, is a sophisticated technique used in the field of materials science and semiconductor manufacturing. This process involves the deposition of thin films of materials at relatively low temperatures compared to traditional epitaxial growth methods. The significance of 低温外延生长 lies in its ability to create high-quality crystalline layers that are essential for the development of advanced electronic and optoelectronic devices. One of the primary advantages of 低温外延生长 is the reduction of thermal stress on the substrate. When materials are grown at elevated temperatures, they can experience significant thermal expansion, leading to defects and dislocations within the crystal structure. By utilizing lower temperatures, 低温外延生长 minimizes these issues, resulting in smoother interfaces and improved material properties.Furthermore, 低温外延生长 allows for the incorporation of various dopants and impurities into the crystalline matrix without causing substantial lattice distortion. This capability is crucial for tailoring the electrical and optical characteristics of semiconductors. For instance, in the production of laser diodes and light-emitting diodes (LEDs), 低温外延生长 enables the precise control of bandgap energies, which directly influences the emission wavelengths of these devices.Another important aspect of 低温外延生长 is its versatility in producing heterostructures. Heterostructures are layered materials composed of different semiconductor compounds, and they play a vital role in enhancing the performance of electronic components. The ability to grow these structures at low temperatures allows researchers and engineers to explore new material combinations that were previously unattainable with higher temperature processes.Despite its advantages, 低温外延生长 does come with certain challenges. The growth rates are generally slower than those achieved with conventional methods, which can impact production efficiency. Additionally, maintaining uniformity across large substrates can be difficult due to the intricate nature of the low-temperature processes involved. However, ongoing research and technological advancements continue to address these limitations, making 低温外延生长 an increasingly viable option for a wide range of applications.In conclusion, 低温外延生长 is a pivotal technique in modern materials science that offers numerous benefits for the fabrication of advanced semiconductor devices. By enabling the growth of high-quality crystalline layers at reduced temperatures, this method not only enhances device performance but also opens up new possibilities for innovation in the field. As technology continues to evolve, the importance of 低温外延生长 will undoubtedly grow, paving the way for the next generation of electronic and optoelectronic applications.

低温外延生长是一种在材料科学和半导体制造领域中使用的复杂技术。该过程涉及在相对较低的温度下沉积材料的薄膜,与传统的外延生长方法相比,这种温度较低。低温外延生长的重要性在于它能够创造出高质量的晶体层,这对于先进电子和光电设备的发展至关重要。低温外延生长的主要优点之一是减少了对基底的热应力。当材料在高温下生长时,它们可能会经历显著的热膨胀,导致晶体结构内部出现缺陷和位错。通过利用较低的温度,低温外延生长最小化了这些问题,从而产生更光滑的界面和改善的材料性能。此外,低温外延生长还允许在晶体基质中掺入各种掺杂剂和杂质,而不会造成实质性的晶格畸变。这一能力对于调整半导体的电气和光学特性至关重要。例如,在激光二极管和发光二极管(LED)的生产中,低温外延生长使得能够精确控制带隙能量,这直接影响到这些设备的发射波长。低温外延生长的另一个重要方面是其在生产异质结构中的多样性。异质结构是由不同半导体化合物组成的分层材料,它们在增强电子元件性能方面发挥着重要作用。在低温下生长这些结构的能力使得研究人员和工程师能够探索以前无法通过高温工艺实现的新材料组合。尽管有其优点,低温外延生长确实存在某些挑战。与传统方法相比,生长速率通常较慢,这可能会影响生产效率。此外,由于低温过程中复杂的性质,保持大基底的一致性可能会很困难。然而,持续的研究和技术进步不断解决这些限制,使得低温外延生长成为多种应用中越来越可行的选择。总之,低温外延生长是现代材料科学中的一种关键技术,为先进半导体设备的制造提供了许多好处。通过在降低的温度下实现高质量晶体层的生长,这种方法不仅增强了设备性能,还为该领域的创新开辟了新的可能性。随着技术的不断发展,低温外延生长的重要性无疑将不断增长,为下一代电子和光电应用铺平道路。

相关单词

temperature

temperature详解:怎么读、什么意思、用法

epitaxy

epitaxy详解:怎么读、什么意思、用法