ionized atom

简明释义

电离原子

英英释义

An ionized atom is an atom that has gained or lost one or more electrons, resulting in a net electric charge.

离子化原子是指获得或失去一个或多个电子,从而产生净电荷的原子。

例句

1.The presence of ionized atom(带电原子)can significantly affect the conductivity of a material.

带有ionized atom(带电原子)的存在可以显著影响材料的导电性。

2.In astrophysics, we study the behavior of ionized atom(带电原子)in stellar atmospheres.

在天体物理学中,我们研究星际气氛中ionized atom(带电原子)的行为。

3.During the experiment, we observed how the ionized atom(带电原子)interacts with magnetic fields.

在实验中,我们观察到ionized atom(带电原子)如何与磁场相互作用。

4.The process of ionization occurs when an ionized atom(带电原子)loses or gains an electron.

当一个ionized atom(带电原子)失去或获得一个电子时,就会发生电离过程。

5.In a plasma state, the gas consists of many free electrons and ionized atom(带电原子).

在等离子态中,气体由许多自由电子和ionized atom(带电原子)组成。

作文

In the realm of chemistry and physics, understanding the concept of an ionized atom is fundamental to grasping the behavior of matter at a molecular level. An ionized atom is created when an atom gains or loses one or more electrons, resulting in a net electric charge. This process is known as ionization. Ionization can occur through various means, including exposure to heat, electromagnetic radiation, or chemical reactions. The significance of ionized atoms extends beyond theoretical studies; they play crucial roles in numerous applications ranging from astrophysics to everyday technologies like fluorescent lights and plasma TVs.When an atom loses an electron, it becomes positively charged and is referred to as a cation. Conversely, when an atom gains an electron, it becomes negatively charged and is called an anion. The formation of ionized atoms is essential in many chemical reactions, particularly in ionic bonding, where cations and anions attract each other to form stable compounds. For instance, table salt (sodium chloride) is formed by the combination of sodium ions (Na+) and chloride ions (Cl-). This interaction between ionized atoms illustrates how their charges influence the formation of new substances.Furthermore, the study of ionized atoms is pivotal in understanding plasma, often referred to as the fourth state of matter. Plasma consists of a collection of ionized atoms and free electrons, which gives it unique properties, such as conductivity and responsiveness to magnetic fields. In stars, including our Sun, hydrogen atoms are ionized due to extreme temperatures, leading to nuclear fusion processes that produce energy. This phenomenon not only powers the stars but also creates heavier elements, which are essential for the formation of planets and life.In technology, ionized atoms are utilized in various applications. For example, in fluorescent lamps, an electric current passes through a gas, ionizing the gas atoms and producing ultraviolet light. This light then excites a phosphor coating on the inside of the lamp, emitting visible light. Similarly, in the field of medicine, ionized atoms are used in radiation therapy to target and destroy cancer cells. By understanding how ionized atoms interact with biological tissues, medical professionals can harness their properties for therapeutic purposes.Moreover, the presence of ionized atoms in the atmosphere is crucial for phenomena such as lightning and auroras. During storms, the intense energy can ionize air molecules, resulting in the rapid discharge of electricity we observe as lightning. Similarly, when charged particles from the solar wind collide with the Earth's magnetic field, they can ionize atmospheric gases, creating beautiful displays of light known as auroras.In conclusion, the understanding of ionized atoms opens up a world of knowledge in both scientific research and practical applications. From forming the basis of chemical reactions to powering the stars and enabling modern technology, ionized atoms are integral to our understanding of the universe. As we continue to explore the intricacies of atomic behavior, the role of ionized atoms will undoubtedly remain a focal point in advancing science and technology. The study of these charged entities not only enriches our comprehension of matter but also enhances our ability to innovate and apply this knowledge in various fields.

在化学和物理学的领域中,理解“离子化原子”的概念是掌握物质在分子层面行为的基础。“离子化原子”是当一个原子获得或失去一个或多个电子时产生的,从而导致净电荷的结果。这一过程被称为离子化。离子化可以通过多种方式发生,包括暴露于热量、电磁辐射或化学反应中。“离子化原子”的重要性不仅限于理论研究;它们在从天体物理学到日常技术(如荧光灯和等离子电视)等众多应用中发挥着关键作用。当一个原子失去电子时,它变得带正电荷,被称为阳离子。相反,当一个原子获得电子时,它变得带负电荷,被称为阴离子。“离子化原子”的形成在许多化学反应中至关重要,特别是在离子键合过程中,阳离子和阴离子相互吸引形成稳定的化合物。例如,食盐(氯化钠)是通过钠离子(Na+)和氯离子(Cl-)的结合形成的。这种“离子化原子”之间的相互作用说明了它们的电荷如何影响新物质的形成。此外,“离子化原子”的研究对于理解等离子体至关重要,等离子体通常被称为物质的第四种状态。等离子体由一组“离子化原子”和自由电子组成,这赋予了它独特的性质,如导电性和对磁场的响应。在恒星中,包括我们的太阳,由于极端温度,氢原子被离子化,导致核聚变过程产生能量。这一现象不仅为恒星提供能量,还创造了重元素,这些元素对行星和生命的形成至关重要。在技术领域,“离子化原子”被用于各种应用。例如,在荧光灯中,电流通过气体,离子化气体原子并产生紫外线。这种光激发灯管内部的磷光涂层,发出可见光。同样,在医学领域,“离子化原子”被用于放射治疗,以针对和摧毁癌细胞。通过理解“离子化原子”如何与生物组织相互作用,医疗专业人员能够利用它们的特性进行治疗。此外,“离子化原子”在大气中的存在对于闪电和极光等现象至关重要。在暴风雨期间,强烈的能量可以使空气分子离子化,导致我们观察到的电力快速释放,即闪电。类似地,当来自太阳风的带电粒子与地球的磁场碰撞时,它们可能会离子化大气气体,产生美丽的光辉显示,称为极光。总之,理解“离子化原子”为科学研究和实际应用打开了一扇知识的大门。从形成化学反应的基础到为恒星提供动力以及实现现代技术,“离子化原子”对于我们理解宇宙至关重要。随着我们继续探索原子行为的复杂性,“离子化原子”的角色无疑将继续成为推动科学和技术进步的焦点。这些带电实体的研究不仅丰富了我们对物质的理解,也增强了我们在各个领域创新和应用这一知识的能力。

相关单词

ionized

ionized详解:怎么读、什么意思、用法