ionization cross section
简明释义
电离截面
英英释义
The ionization cross section is a measure of the probability that an incident particle will ionize an atom or molecule, expressed as an effective area. | 电离截面是衡量入射粒子使原子或分子电离的概率,通常以有效面积表示。 |
例句
1.Researchers found that the ionization cross section 电离截面 varies significantly with different energy levels.
研究人员发现,不同能量水平下的电离截面变化显著。
2.The ionization cross section 电离截面 is a key parameter in modeling plasma physics.
在等离子体物理建模中,电离截面是一个关键参数。
3.In astrophysics, the ionization cross section 电离截面 helps predict the behavior of cosmic rays in the atmosphere.
在天体物理学中,电离截面有助于预测宇宙射线在大气中的行为。
4.The measurement of the ionization cross section 电离截面 is crucial for understanding atomic interactions.
对电离截面的测量对于理解原子相互作用至关重要。
5.We used the ionization cross section 电离截面 data to improve our simulations of particle collisions.
我们使用电离截面数据来改进粒子碰撞的模拟。
作文
The study of atomic and molecular physics often involves understanding various fundamental concepts that govern the behavior of particles. One such concept is the ionization cross section, which plays a crucial role in determining how atoms and molecules interact with incoming radiation or particles. The ionization cross section can be defined as a measure of the probability that an incident particle will ionize a target atom or molecule when they collide. This measurement is essential for various applications, including astrophysics, plasma physics, and even medical physics.To comprehend the significance of the ionization cross section, it is important to first understand what ionization entails. Ionization is the process through which an atom or molecule loses one or more electrons, resulting in the formation of charged particles known as ions. This process can occur due to various forms of energy, such as electromagnetic radiation, collisions with other particles, or thermal energy. The likelihood of ionization occurring depends on several factors, including the energy of the incoming particle and the inherent properties of the target atom or molecule.The ionization cross section is typically expressed in units of area, which may seem counterintuitive at first. However, this unit of measurement effectively represents the effective target area that an incoming particle must 'hit' to cause ionization. A larger ionization cross section indicates a higher probability of ionization, while a smaller cross section suggests a lower likelihood. Researchers often plot the ionization cross section against the energy of the incoming particles to visualize how the probability of ionization changes with energy.In practical terms, the ionization cross section is vital for understanding processes in astrophysical environments, such as the interaction of cosmic rays with interstellar gas. When high-energy cosmic rays collide with neutral hydrogen atoms in space, the ionization cross section helps predict how many hydrogen atoms will become ionized, which in turn influences the overall chemistry and dynamics of the interstellar medium. Additionally, in the field of plasma physics, knowing the ionization cross section allows scientists to model and control plasma behavior in fusion reactors, where ionization plays a key role in sustaining the plasma state.Moreover, in medical physics, the ionization cross section is critical for understanding how radiation interacts with biological tissues. For instance, when X-rays or gamma rays pass through human tissue, the ionization cross section determines the extent to which these rays can ionize atoms within the tissue, potentially leading to cellular damage or mutations. By studying the ionization cross section, researchers can improve radiation therapy techniques, ensuring that they maximize damage to cancerous cells while minimizing harm to healthy tissue.In conclusion, the ionization cross section is a fundamental parameter that provides insight into the interactions between particles and matter. Its applications span across various scientific fields, making it a crucial concept in both theoretical studies and practical applications. As we continue to explore the universe and develop new technologies, understanding the ionization cross section will remain vital for advancing our knowledge and capabilities in physics and beyond.
原子和分子物理学的研究通常涉及理解支配粒子行为的各种基本概念。其中一个重要概念是电离截面,它在确定原子和分子如何与入射辐射或粒子相互作用方面发挥着至关重要的作用。电离截面可以定义为入射粒子在碰撞时使目标原子或分子电离的概率的度量。这一测量对于包括天体物理学、等离子体物理学甚至医学物理学在内的各种应用都是至关重要的。要理解电离截面的重要性,首先需要了解电离的含义。电离是一个过程,通过该过程,原子或分子失去一个或多个电子,从而形成称为离子的带电粒子。这个过程可以由于各种形式的能量而发生,例如电磁辐射、与其他粒子的碰撞或热能。电离发生的可能性取决于多个因素,包括入射粒子的能量和目标原子或分子的固有特性。电离截面通常以面积单位表示,这起初可能看起来有些反直觉。然而,这种测量单位有效地代表了入射粒子必须“击中”的有效目标面积,以导致电离。较大的电离截面表示电离的概率较高,而较小的截面则表明可能性较低。研究人员通常将电离截面与入射粒子的能量绘制在一起,以可视化电离概率如何随着能量变化。在实际应用中,电离截面对于理解天体物理环境中的过程至关重要,例如宇宙射线与星际气体的相互作用。当高能宇宙射线与太空中的中性氢原子碰撞时,电离截面有助于预测有多少氢原子会被电离,这反过来又影响星际介质的整体化学和动力学。此外,在等离子体物理学领域,了解电离截面使科学家能够对聚变反应堆中的等离子体行为进行建模和控制,其中电离在维持等离子体状态中发挥着关键作用。此外,在医学物理学中,电离截面对于理解辐射如何与生物组织相互作用至关重要。例如,当X射线或伽马射线穿过人体组织时,电离截面决定了这些射线能够在组织内电离原子的程度,从而可能导致细胞损伤或突变。通过研究电离截面,研究人员可以改善放射治疗技术,确保最大限度地损害癌细胞,同时最小化对健康组织的伤害。总之,电离截面是一个基本参数,它提供了对粒子与物质相互作用的深入理解。它的应用跨越多个科学领域,使其成为理论研究和实际应用中的关键概念。随着我们继续探索宇宙并开发新技术,理解电离截面将仍然对推进我们在物理学及其他领域的知识和能力至关重要。
相关单词