antiferromagnet

简明释义

[/ˌæntifɛrˈmæɡnɪt/][/ˌæntifɛrˈmæɡnɪt/]

n. 反铁磁性物质

英英释义

A type of magnetic material in which adjacent atoms or ions have opposite magnetic moments, resulting in a net magnetization of zero.

一种磁性材料,其中相邻的原子或离子具有相反的磁矩,导致净磁化为零。

单词用法

同义词

antiferromagnetic material

反铁磁材料

Antiferromagnetic materials are used in spintronics.

反铁磁材料被用于自旋电子学。

antiferromagnetism

反铁磁性

The study of antiferromagnetism is crucial for understanding magnetic properties at the atomic level.

研究反铁磁性对于理解原子级别的磁性特性至关重要。

反义词

ferromagnet

铁磁体

Ferromagnets like iron exhibit strong magnetic properties even in the absence of an external magnetic field.

像铁这样的铁磁体即使在没有外部磁场的情况下也表现出强烈的磁性。

paramagnet

顺磁体

Paramagnetic materials are weakly attracted by a magnetic field and do not retain magnetization.

顺磁材料被磁场微弱吸引,并且不会保持磁性。

例句

1.On the basis of standard spin-wave theory, the magnetic dispersion relations for a two-dimensional Heisenberg antiferromagnet are investigated.

利用标准的自旋波理论,研究了二维三角海森堡反铁磁体的色散关系。

2.On the basis of standard spin-wave theory, the magnetic dispersion relations for a two-dimensional Heisenberg antiferromagnet are investigated.

利用标准的自旋波理论,研究了二维三角海森堡反铁磁体的色散关系。

3.Understanding the behavior of an antiferromagnet 反铁磁体 is crucial for developing new magnetic technologies.

理解反铁磁体的行为对于开发新的磁性技术至关重要。

4.In the study of magnetic materials, a common example of an antiferromagnet 反铁磁体 is manganese oxide.

在磁性材料的研究中,锰氧化物是一个常见的反铁磁体的例子。

5.Researchers are exploring the use of antiferromagnet 反铁磁体 materials in spintronic devices.

研究人员正在探索在自旋电子设备中使用反铁磁体材料。

6.The properties of an antiferromagnet 反铁磁体 can change significantly with temperature.

一个反铁磁体的性质可以随着温度的变化而显著改变。

7.The alignment of spins in an antiferromagnet 反铁磁体 is opposite to each other.

反铁磁体中,自旋的排列是相互对立的。

作文

In the realm of condensed matter physics, understanding the various types of magnetic materials is crucial for both theoretical and practical applications. One fascinating type of magnetic material is the antiferromagnet, which exhibits unique properties that distinguish it from other magnetic materials such as ferromagnets. To grasp the significance of antiferromagnets, we must first delve into the fundamental principles of magnetism. Magnetism arises from the motion of electrons and their intrinsic spin. In ferromagnetic materials, the magnetic moments of individual atoms align parallel to one another, resulting in a net magnetic moment. This alignment occurs due to strong exchange interactions between neighboring spins. In contrast, antiferromagnets exhibit a different behavior; the magnetic moments of adjacent atoms align in opposite directions. This antiparallel alignment leads to a cancellation of the overall magnetic moment, making antiferromagnets non-magnetic at a macroscopic scale despite having ordered magnetic moments at the atomic level.The unique characteristics of antiferromagnets arise from their distinct temperature-dependent behavior. At absolute zero, antiferromagnets possess a well-defined magnetic order. As the temperature increases, thermal agitation disrupts this order, leading to a phase transition. The Neel temperature, named after the physicist Louis Neel, marks the critical point at which an antiferromagnet transitions to a paramagnetic state where the magnetic moments become disordered. Understanding this transition is essential for applications in spintronics, a field that exploits the intrinsic spin of electrons for information processing.One of the most intriguing aspects of antiferromagnets is their potential for use in advanced technological applications. Due to their lack of a net magnetic moment, antiferromagnets are less susceptible to external magnetic fields, making them ideal candidates for data storage devices that require stability against magnetic interference. Moreover, the ability to manipulate their magnetic order through electric fields opens up possibilities for energy-efficient memory devices.Research into antiferromagnetic materials has surged in recent years, driven by the quest for faster and more efficient electronic components. Scientists are exploring various compounds, such as transition metal oxides and layered materials, to uncover new antiferromagnetic phenomena. These investigations not only deepen our understanding of fundamental physics but also pave the way for innovative technological advancements.In conclusion, antiferromagnets represent a captivating area of study within the field of magnetism. Their unique properties, characterized by antiparallel magnetic moments and temperature-dependent behavior, set them apart from other magnetic materials. As research continues to advance, the potential applications of antiferromagnets in technology hold promise for the development of next-generation electronic devices. By harnessing the principles of antiferromagnetism, we may unlock new pathways for innovation in various fields, ultimately enhancing our understanding of the physical world around us.

在凝聚态物理学领域,理解各种类型的磁性材料对理论和实际应用至关重要。一种引人入胜的磁性材料是反铁磁体,它展现出独特的特性,使其与其他磁性材料(如铁磁体)区分开来。要掌握反铁磁体的重要性,我们必须首先深入探讨磁性的基本原理。磁性源于电子的运动及其内在自旋。在铁磁材料中,单个原子的磁矩平行排列,从而产生净磁矩。这种排列是由于相邻自旋之间强烈的交换相互作用引起的。相比之下,反铁磁体表现出不同的行为;相邻原子的磁矩反向排列。这种反平行排列导致整体磁矩的抵消,使得反铁磁体在宏观尺度上表现为非磁性,尽管在原子级别上具有有序的磁矩。反铁磁体的独特特性源于其温度依赖性行为。在绝对零度时,反铁磁体具有明确的磁序。随着温度的升高,热扰动会破坏这种有序状态,导致相变。尼尔温度以物理学家路易斯·尼尔命名,标志着反铁磁体过渡到顺磁状态的临界点,此时磁矩变得无序。理解这一转变对于自旋电子学的应用至关重要,自旋电子学利用电子的内在自旋进行信息处理。反铁磁体最引人注目的方面之一是它们在先进技术应用中的潜力。由于缺乏净磁矩,反铁磁体对外部磁场的敏感性较低,使其成为需要抵抗磁干扰的存储设备的理想候选者。此外,通过电场操控其磁序的能力为能效高的存储设备开辟了可能性。近年来,对反铁磁材料的研究激增,推动了对更快、更高效电子元件的追求。科学家们正在探索各种化合物,如过渡金属氧化物和层状材料,以揭示新的反铁磁现象。这些研究不仅深化了我们对基本物理的理解,也为创新技术进步铺平了道路。总之,反铁磁体代表了磁性领域内一个迷人的研究领域。其独特的特性,以反平行的磁矩和温度依赖性行为为特征,使其与其他磁性材料区分开来。随着研究的不断推进,反铁磁体在技术应用中的潜力为下一代电子设备的发展带来了希望。通过利用反铁磁性的原理,我们可能会为各个领域的创新开辟新的途径,最终增强我们对周围物理世界的理解。