feedback oscillator

简明释义

反馈振荡器

英英释义

A feedback oscillator is an electronic circuit that generates a continuous waveform output by using feedback from its output to its input, allowing it to sustain oscillations.

反馈振荡器是一种电子电路,通过将输出信号反馈到输入端,生成连续的波形输出,从而使其能够维持振荡。

例句

1.By adjusting the parameters of the feedback oscillator 反馈振荡器, we can control the output frequency.

通过调整反馈振荡器 反馈振荡器的参数,我们可以控制输出频率。

2.In our project, we utilized a feedback oscillator 反馈振荡器 to generate precise audio frequencies.

在我们的项目中,我们使用了一个反馈振荡器 反馈振荡器来产生精确的音频频率。

3.The team tested the feedback oscillator 反馈振荡器 under various conditions to ensure reliability.

团队在各种条件下测试了反馈振荡器 反馈振荡器以确保其可靠性。

4.The engineer designed a new feedback oscillator 反馈振荡器 to improve signal stability in the communication system.

工程师设计了一种新的反馈振荡器 反馈振荡器以提高通信系统中的信号稳定性。

5.The feedback oscillator 反馈振荡器 is essential for creating stable waveforms in electronic circuits.

在电子电路中,反馈振荡器 反馈振荡器对于创建稳定波形至关重要。

作文

In the realm of electronics and signal processing, the concept of a feedback oscillator is crucial for generating stable and continuous waveforms. A feedback oscillator refers to a type of electronic circuit that utilizes feedback to produce oscillations or repetitive signals. This mechanism is fundamental in various applications, including radio transmitters, audio equipment, and even in the control systems of modern technology. Understanding how a feedback oscillator operates can provide insights into its importance and utility in both theoretical and practical contexts.At its core, a feedback oscillator consists of an amplifier and a feedback network. The amplifier takes an input signal and amplifies it, while the feedback network routes a portion of the output signal back to the input. This feedback loop creates a condition where the output continuously influences the input, leading to sustained oscillations. The balance between the gain of the amplifier and the attenuation of the feedback determines the stability and frequency of the oscillations produced by the feedback oscillator.One of the most common types of feedback oscillators is the Hartley oscillator, which uses inductors and capacitors to set the frequency of oscillation. In this configuration, the inductors are connected in series and the capacitors in parallel, allowing for precise control over the oscillation frequency. Another popular example is the Colpitts oscillator, which employs a combination of capacitors and an inductor to achieve similar results. Both of these circuits illustrate the versatility of feedback oscillators in generating various frequencies suitable for different applications.The significance of feedback oscillators extends beyond mere waveform generation. They play a vital role in the development of stable clocks for digital circuits, ensuring that operations within microprocessors and other digital devices occur at precise intervals. Moreover, feedback oscillators are integral to phase-locked loops (PLLs), which are used for frequency synthesis and modulation in communication systems. By locking onto a reference frequency, PLLs can stabilize the output frequency of transmitters, making feedback oscillators essential for reliable wireless communication.Additionally, feedback oscillators have applications in audio synthesis, where they are used to create various sound waves and effects. Musicians and sound engineers often utilize these circuits in synthesizers to generate rich and complex audio signals. The ability to manipulate the frequency and amplitude of the oscillations allows for a wide range of creative possibilities in music production.In conclusion, the feedback oscillator represents a fundamental concept in electronics that underpins many modern technologies. Its ability to generate stable oscillations through feedback mechanisms makes it indispensable in various fields, from telecommunications to audio engineering. As we continue to advance technologically, the understanding and application of feedback oscillators will remain critical in shaping the future of electronic devices and systems. By studying these circuits, engineers can innovate new solutions that leverage the power of oscillation to enhance performance and functionality across diverse applications.

在电子学和信号处理领域,反馈振荡器的概念对生成稳定和连续的波形至关重要。反馈振荡器是指一种利用反馈产生振荡或重复信号的电子电路。这一机制在各种应用中都是基础,包括无线电发射机、音频设备,甚至现代技术的控制系统。理解反馈振荡器的工作原理可以深入了解其在理论和实际中的重要性和实用性。反馈振荡器的核心由放大器和反馈网络组成。放大器接收输入信号并对其进行放大,而反馈网络则将输出信号的一部分重新路由回输入。这一反馈环路创建了一种条件,使输出不断影响输入,从而导致持续的振荡。放大器的增益与反馈的衰减之间的平衡决定了由反馈振荡器产生的振荡的稳定性和频率。最常见的反馈振荡器类型之一是哈特利振荡器,它使用电感和电容来设定振荡频率。在这种配置中,电感串联连接,电容并联连接,从而实现对振荡频率的精确控制。另一个流行的例子是科尔皮茨振荡器,它结合了电容器和电感器以实现类似的结果。这两种电路都说明了反馈振荡器在生成适合不同应用的各种频率方面的多功能性。反馈振荡器的重要性不仅限于波形生成。它们在数字电路稳定时钟的发展中发挥着至关重要的作用,确保微处理器和其他数字设备内的操作在精确的间隔内发生。此外,反馈振荡器是锁相环(PLL)不可或缺的一部分,后者用于通信系统中的频率合成和调制。通过锁定参考频率,PLL可以稳定发射机的输出频率,使反馈振荡器在可靠的无线通信中必不可少。此外,反馈振荡器在音频合成中也有应用,音乐家和音响工程师通常在合成器中利用这些电路生成各种声波和效果。操纵振荡的频率和幅度的能力为音乐制作提供了广泛的创作可能性。总之,反馈振荡器代表了电子学中的一个基本概念,它支撑着许多现代技术。通过反馈机制产生稳定振荡的能力使其在电信、音频工程等多个领域成为不可或缺的部分。随着技术的不断进步,对反馈振荡器的理解和应用将在塑造电子设备和系统的未来中继续至关重要。通过研究这些电路,工程师可以创新新的解决方案,利用振荡的力量增强各类应用的性能和功能。

相关单词

oscillator

oscillator详解:怎么读、什么意思、用法