excitation level

简明释义

激发能级

英英释义

The degree of energy or stimulation that an atom, molecule, or system possesses, often resulting from the absorption of energy.

原子、分子或系统所具有的能量或刺激的程度,通常是由于能量的吸收而导致的。

例句

1.In quantum mechanics, the excitation level indicates how much energy is absorbed by an atom.

在量子力学中,激发水平表示原子吸收了多少能量。

2.Adjusting the excitation level can improve the resolution of the imaging system.

调整激发水平可以提高成像系统的分辨率。

3.The scientist measured the excitation level to determine the energy state of the electrons.

科学家测量了激发水平以确定电子的能量状态。

4.Researchers found that the excitation level affects the fluorescence intensity of the sample.

研究人员发现,激发水平影响样品的荧光强度。

5.The laser's excitation level must be carefully controlled for optimal performance.

激光的激发水平必须被仔细控制以达到最佳性能。

作文

The concept of excitation level is crucial in various fields of science, particularly in physics and chemistry. It refers to the energy state of a system when it has absorbed energy, causing its particles to move to a higher energy state. This phenomenon can be observed in atoms, molecules, and even larger systems. Understanding the excitation level helps scientists predict how substances will behave under different conditions, which is vital for both theoretical research and practical applications.In atomic physics, for instance, when an electron absorbs energy, it moves from a lower energy level to a higher one, reaching an excitation level. This process can occur through various means, such as light absorption or collisions with other particles. Once the electron reaches this elevated state, it may remain there for a brief period before returning to its original state, often releasing energy in the form of light or heat. The specific excitation level that an electron occupies can provide valuable information about the atom's properties and its interactions with other atoms.In the field of chemistry, understanding the excitation level is essential for explaining chemical reactions. When molecules absorb energy, their electrons can also jump to higher excitation levels, leading to changes in molecular structure and reactivity. This principle is fundamental in spectroscopy, where scientists analyze the light emitted or absorbed by substances to determine their composition and properties. By studying the excitation levels of molecules, chemists can gain insights into reaction mechanisms and the stability of different chemical species.Moreover, the excitation level concept extends beyond the microscopic world. In materials science, the excitation levels of electrons in solids can influence the material's electrical and thermal conductivity. For example, semiconductors rely on the manipulation of excitation levels to control the flow of electricity. By introducing impurities or doping the material, scientists can modify the excitation levels of electrons, allowing them to conduct electricity more efficiently. This principle is the backbone of modern electronics, enabling the development of transistors, diodes, and other essential components.In addition, the excitation level plays a significant role in biological systems. For instance, photosynthesis in plants involves the absorption of light energy, which excites electrons in chlorophyll molecules, raising them to higher excitation levels. This energy is then used to convert carbon dioxide and water into glucose and oxygen, showcasing the importance of excitation levels in sustaining life on Earth.In conclusion, the term excitation level encompasses a wide range of phenomena across different scientific disciplines. From atomic and molecular interactions to materials science and biological processes, the understanding of excitation levels is fundamental for advancing our knowledge and technology. As research continues to unfold, the implications of excitation levels will undoubtedly lead to new discoveries and innovations that can benefit society as a whole. Therefore, grasping this concept is not only important for students and professionals in science but also for anyone interested in the workings of the natural world.

“激发水平”这一概念在多个科学领域中至关重要,尤其是在物理学和化学中。它指的是当一个系统吸收能量时,其粒子移动到更高能量状态的能量状态。这种现象可以在原子、分子甚至更大系统中观察到。理解“激发水平”有助于科学家预测物质在不同条件下的行为,这对于理论研究和实际应用都是至关重要的。例如,在原子物理学中,当电子吸收能量时,它会从较低的能量水平移动到更高的能量水平,达到“激发水平”。这个过程可以通过多种方式发生,比如光的吸收或与其他粒子的碰撞。一旦电子达到这一提升状态,它可能会在此停留一段短暂的时间,然后返回其原始状态,通常以光或热的形式释放能量。电子所占据的特定“激发水平”可以提供有关原子特性及其与其他原子相互作用的宝贵信息。在化学领域,理解“激发水平”对于解释化学反应至关重要。当分子吸收能量时,它们的电子也可以跃迁到更高的“激发水平”,导致分子结构和反应性的变化。这一原理在光谱学中是基础,科学家通过分析物质发射或吸收的光来确定它们的成分和属性。通过研究分子的“激发水平”,化学家可以深入了解反应机制和不同化学物质的稳定性。此外,“激发水平”的概念超越了微观世界。在材料科学中,固体中电子的“激发水平”可以影响材料的电导率和热导率。例如,半导体依赖于对“激发水平”的操控来控制电流的流动。通过引入杂质或掺杂材料,科学家可以修改电子的“激发水平”,使其能够更有效地导电。这一原理是现代电子学的基础,使晶体管、二极管和其他基本组件的发展成为可能。另外,“激发水平”在生物系统中也起着重要作用。例如,植物中的光合作用涉及光能的吸收,这激发了叶绿素分子中的电子,使其跃迁到更高的“激发水平”。然后,这种能量用于将二氧化碳和水转化为葡萄糖和氧气,展示了“激发水平”在维持地球生命中的重要性。总之,“激发水平”一词涵盖了不同科学学科中广泛的现象。从原子和分子相互作用到材料科学和生物过程,对“激发水平”的理解是推进我们知识和技术的基础。随着研究的不断展开,“激发水平”的影响无疑会导致新的发现和创新,这些发现和创新能够惠及整个社会。因此,掌握这一概念不仅对科学领域的学生和专业人士重要,也对任何对自然界运作感兴趣的人至关重要。

相关单词

excitation

excitation详解:怎么读、什么意思、用法