excitation cross section

简明释义

激发截面

英英释义

The excitation cross section is a measure of the probability that a particular interaction will occur, specifically the likelihood that an incoming particle will excite a target particle to a higher energy state.

激发截面是衡量特定相互作用发生概率的一个指标,特别是入射粒子激发目标粒子到更高能量状态的可能性。

例句

1.In nuclear physics, the excitation cross section 激发截面 is crucial for predicting reaction outcomes.

在核物理中,激发截面 激发截面 对于预测反应结果至关重要。

2.Researchers are studying the excitation cross section 激发截面 to understand the energy levels of various molecules.

研究人员正在研究 激发截面 激发截面 以了解各种分子的能级。

3.The excitation cross section 激发截面 of a particular transition can be calculated using quantum mechanics.

特定跃迁的 激发截面 激发截面 可以使用量子力学进行计算。

4.The measured excitation cross section 激发截面 for the helium atom provides insights into its interaction with photons.

对氦原子的测量 激发截面 激发截面 为其与光子的相互作用提供了见解。

5.Experimental data on the excitation cross section 激发截面 helps refine theoretical models.

关于 激发截面 激发截面 的实验数据有助于完善理论模型。

作文

The concept of excitation cross section is fundamental in the field of atomic and molecular physics. It refers to a measure of the probability that an incoming photon or particle will excite an atom or molecule from a lower energy state to a higher one. This concept is crucial for understanding various physical processes, such as spectroscopy, where light interacts with matter, leading to transitions between energy levels. The excitation cross section can be influenced by several factors, including the energy of the incoming photon, the nature of the target atom or molecule, and the specific transition being considered.In practical terms, the excitation cross section is often expressed in units of area, typically in square centimeters. A larger cross section indicates a higher probability of excitation occurring, while a smaller cross section suggests a lower likelihood. For researchers and scientists, knowing the excitation cross section of a particular transition is essential for predicting how a substance will behave under different conditions, especially when exposed to radiation.One of the key applications of the excitation cross section is in the study of astrophysical phenomena. For instance, understanding how starlight interacts with interstellar gas and dust requires knowledge of the excitation cross sections of various atomic and molecular species. This information helps astronomers interpret the spectra observed from distant stars and galaxies, providing insights into their composition and physical conditions.Moreover, the excitation cross section is also significant in fields like plasma physics and fusion research. In these areas, the interactions between charged particles and neutral atoms are critical. By studying the excitation cross section, scientists can better understand energy transfer processes that occur in plasmas, which are essential for developing efficient fusion reactors.Another important aspect of the excitation cross section is its role in the development of new materials and technologies. For example, in the field of photonics, researchers are exploring materials that exhibit specific excitation properties to create more efficient lasers and optical devices. Knowledge of the excitation cross section allows engineers to design materials that can effectively convert light into other forms of energy, enhancing the performance of various applications, from telecommunications to renewable energy sources.In conclusion, the excitation cross section is a vital parameter in understanding the interaction of light and matter. Its implications span various scientific disciplines, including astrophysics, plasma physics, and materials science. As research continues to advance, the ability to accurately measure and predict the excitation cross section will undoubtedly lead to new discoveries and innovations across multiple fields. By delving deeper into this concept, we can unlock further secrets of the universe and harness new technologies that improve our daily lives.

“激发截面”这一概念在原子和分子物理学领域中至关重要。它指的是一个度量,即入射光子或粒子将原子或分子从较低能态激发到较高能态的概率。这一概念对于理解各种物理过程至关重要,例如光谱学,其中光与物质相互作用,导致能级之间的跃迁。“激发截面”的大小可能受到多个因素的影响,包括入射光子的能量、目标原子或分子的性质以及所考虑的特定跃迁。在实际应用中,“激发截面”通常以面积单位表示,通常为平方厘米。较大的截面表明激发发生的概率较高,而较小的截面则表明可能性较低。对于研究人员和科学家而言,了解特定跃迁的“激发截面”对于预测物质在不同条件下的行为至关重要,尤其是在暴露于辐射时。“激发截面”的一个关键应用是在天体物理现象的研究中。例如,理解恒星光如何与星际气体和尘埃相互作用需要了解各种原子和分子种类的激发截面。这些信息帮助天文学家解释从遥远恒星和星系观察到的光谱,从而提供有关其组成和物理条件的见解。此外,“激发截面”在等离子体物理学和聚变研究等领域也很重要。在这些领域,带电粒子与中性原子之间的相互作用至关重要。通过研究“激发截面”,科学家可以更好地理解在等离子体中发生的能量转移过程,这对开发高效的聚变反应堆至关重要。“激发截面”的另一个重要方面是它在新材料和技术开发中的作用。例如,在光子学领域,研究人员正在探索具有特定激发特性的材料,以创造更高效的激光器和光学设备。了解“激发截面”使工程师能够设计出能有效将光转化为其他形式能量的材料,从而提高各种应用的性能,从电信到可再生能源。总之,“激发截面”是理解光与物质相互作用的重要参数。其影响跨越多个科学学科,包括天体物理学、等离子体物理学和材料科学。随着研究的不断推进,准确测量和预测“激发截面”的能力无疑将导致各个领域的新发现和创新。通过深入研究这一概念,我们可以揭示宇宙的更多秘密,并利用新技术改善我们的日常生活。

相关单词

excitation

excitation详解:怎么读、什么意思、用法