epitaxial body
简明释义
外延衬底
英英释义
例句
1.The researchers developed a new method to grow an epitaxial body 外延体 on a silicon substrate.
研究人员开发了一种新方法,在硅基底上生长一个epitaxial body 外延体。
2.The team successfully characterized the epitaxial body 外延体 using advanced microscopy techniques.
团队成功地使用先进的显微镜技术对epitaxial body 外延体进行了表征。
3.The growth rate of the epitaxial body 外延体 can be controlled by adjusting the temperature and pressure during deposition.
通过调整沉积过程中的温度和压力,可以控制epitaxial body 外延体的生长速率。
4.In semiconductor manufacturing, the quality of the epitaxial body 外延体 directly affects device performance.
在半导体制造中,epitaxial body 外延体的质量直接影响设备性能。
5.They are investigating the thermal properties of the epitaxial body 外延体 for better heat management in devices.
他们正在研究epitaxial body 外延体的热性能,以便更好地管理设备中的热量。
作文
The concept of an epitaxial body is crucial in the field of materials science and semiconductor technology. An epitaxial body refers to a crystalline layer that is grown on a substrate crystal, where the layer's crystal structure is oriented in a specific manner that matches the underlying substrate. This process is known as epitaxy, and it plays a significant role in the development of high-quality semiconductor devices. The ability to control the thickness, composition, and doping of the epitaxial body allows for the fabrication of advanced electronic components such as transistors, lasers, and photovoltaic cells.Epitaxial growth can occur through various methods, including molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). Each of these techniques has its unique advantages and applications. For instance, MBE allows for precise control over the growth conditions, enabling the creation of complex heterostructures with tailored properties. On the other hand, MOCVD is widely used for producing large-area films, making it suitable for commercial applications.The significance of an epitaxial body extends beyond just the semiconductor industry. In the realm of optoelectronics, devices like light-emitting diodes (LEDs) and laser diodes rely heavily on the quality of the epitaxial body. The efficiency and performance of these devices are directly linked to the structural integrity and purity of the epitaxial layers. Therefore, researchers continually seek to improve the epitaxial growth processes to enhance device performance.Moreover, the study of epitaxial bodies also opens up avenues for exploring new materials and heterostructures that can lead to innovative technologies. For example, the integration of two-dimensional materials, such as graphene or transition metal dichalcogenides, with traditional semiconductors can result in novel electronic and optoelectronic properties. This research not only expands our understanding of material science but also paves the way for future applications in flexible electronics and quantum computing.In conclusion, the epitaxial body is a fundamental concept in modern materials science, particularly in the development of semiconductor devices. Its importance cannot be overstated, as it serves as the backbone for various technologies that shape our daily lives. By mastering the principles of epitaxy and understanding the characteristics of epitaxial bodies, scientists and engineers can continue to push the boundaries of what is possible in electronic and optoelectronic devices, driving innovation and progress in the field.
“外延体”这一概念在材料科学和半导体技术领域至关重要。“外延体”指的是在基底晶体上生长的晶体层,其中层的晶体结构以特定方式与下方的基底相匹配。这个过程被称为外延生长,它在高质量半导体器件的开发中发挥着重要作用。控制“外延体”的厚度、成分和掺杂可以用于制造先进的电子元件,如晶体管、激光器和光伏电池。外延生长可以通过多种方法进行,包括分子束外延(MBE)和金属有机化学气相沉积(MOCVD)。每种技术都有其独特的优点和应用。例如,MBE允许对生长条件进行精确控制,从而能够创建具有定制特性的复杂异质结构。另一方面,MOCVD广泛用于生产大面积薄膜,使其适合商业应用。“外延体”的重要性不仅限于半导体行业。在光电领域,如发光二极管(LED)和激光二极管等设备在很大程度上依赖于“外延体”的质量。这些设备的效率和性能直接与外延层的结构完整性和纯度相关。因此,研究人员不断寻求改善外延生长过程,以增强器件性能。此外,对“外延体”的研究也为探索新材料和异质结构开辟了新的途径,这可能导致创新技术的发展。例如,将二维材料(如石墨烯或过渡金属二硫化物)与传统半导体结合,可以产生新颖的电子和光电特性。这项研究不仅扩展了我们对材料科学的理解,还为未来在柔性电子和量子计算中的应用铺平了道路。总之,“外延体”是现代材料科学中的一个基本概念,特别是在半导体器件的发展中。它的重要性不容小觑,因为它是塑造我们日常生活的各种技术的基础。通过掌握外延学的原理并理解“外延体”的特性,科学家和工程师可以继续推动电子和光电设备的可能性,推动该领域的创新和进步。