emitted electron
简明释义
放出电子
英英释义
例句
1.When heated, the metal surface can produce an emitted electron through thermionic emission.
当加热时,金属表面可以通过热电子发射产生一个发射电子。
2.In a vacuum tube, an emitted electron travels towards the anode, creating a flow of current.
在真空管中,一个发射电子朝向阳极移动,产生电流。
3.In semiconductor devices, the movement of an emitted electron is crucial for their operation.
在半导体设备中,发射电子的运动对于它们的工作至关重要。
4.The process of photoelectric effect involves the release of an emitted electron from a material when it absorbs light.
光电效应的过程涉及材料在吸收光时释放出一个发射电子。
5.The energy of the incoming photon must be greater than the binding energy to free an emitted electron.
入射光子的能量必须大于束缚能才能释放出一个发射电子。
作文
The study of atomic and subatomic particles has always fascinated scientists, leading to groundbreaking discoveries in the field of physics. One of the key concepts in this area is the phenomenon of the emitted electron, which plays a crucial role in various physical processes. An emitted electron refers to an electron that is released from an atom or molecule, usually as a result of energy absorption or excitation. This process can occur in several ways, including photoelectric effect, thermionic emission, and field emission.In the photoelectric effect, for instance, when light of sufficient energy strikes a material, it can impart enough energy to an electron to overcome the attractive forces holding it within the atom. As a result, the electron is ejected, becoming an emitted electron. This phenomenon not only demonstrates the particle nature of light but also has practical applications in technologies such as solar cells and photodetectors.Thermionic emission, on the other hand, occurs when electrons are emitted from a heated material. The heat provides thermal energy to the electrons, enabling them to overcome the potential barrier of the material. This principle is utilized in vacuum tubes and cathode ray tubes, where the flow of emitted electrons is essential for their operation. In these devices, the control and manipulation of emitted electrons allow for amplification and signal processing in electronic circuits.Field emission is another method through which electrons can be emitted. In this case, a strong electric field is applied to a material, which lowers the energy barrier for electrons, allowing them to escape. This technique is used in applications like field emission displays and electron microscopes, where a precise control of emitted electrons is necessary for high-resolution imaging and display technologies.Understanding the behavior of emitted electrons is critical in quantum mechanics, as it helps explain various phenomena at the atomic level. Quantum mechanics describes how particles like electrons exist in states of probability rather than fixed positions. When an electron is emitted, it can exhibit wave-like properties, leading to interference patterns that are crucial for understanding the dual nature of matter.Moreover, the study of emitted electrons is vital in the field of materials science. Researchers investigate how different materials interact with electrons and how the emission characteristics can be tailored for specific applications. For instance, the development of new semiconductors relies heavily on understanding how emitted electrons behave under various conditions, influencing the performance of electronic devices.In conclusion, the concept of the emitted electron is fundamental to many areas of science and technology. From the workings of everyday electronic devices to advanced research in quantum mechanics, the ability to understand and manipulate emitted electrons opens up a world of possibilities. As we continue to explore the intricacies of atomic and subatomic behavior, the significance of emitted electrons will undoubtedly remain at the forefront of scientific inquiry and technological advancement.
原子和亚原子粒子的研究一直吸引着科学家,导致物理学领域的重大突破。其中一个关键概念是发射电子现象,它在各种物理过程中起着至关重要的作用。发射电子是指从原子或分子中释放出的电子,通常是由于能量吸收或激发而产生的。这个过程可以通过多种方式发生,包括光电效应、热离子发射和场发射。例如,在光电效应中,当足够能量的光照射到材料上时,它可以将足够的能量传递给电子,使其克服原子内部的吸引力。因此,电子被弹出,成为发射电子。这一现象不仅证明了光的粒子特性,还有实际应用于太阳能电池和光探测器等技术。另一方面,热离子发射发生在材料加热时。热量为电子提供热能,使其能够克服材料的势垒。这个原理在真空管和阴极射线管中得到应用,其中发射电子的流动对它们的操作至关重要。在这些设备中,发射电子的控制和操纵使得在电子电路中实现放大和信号处理成为可能。场发射是电子可以被发射的另一种方法。在这种情况下,施加强电场到材料上,从而降低电子的能量势垒,使其能够逃逸。该技术应用于场发射显示器和电子显微镜等设备中,在这些设备中,对发射电子的精确控制对于高分辨率成像和显示技术至关重要。理解发射电子的行为对于量子力学至关重要,因为它有助于解释原子级别的各种现象。量子力学描述了像电子这样的粒子以概率状态而非固定位置存在。当一个电子被发射时,它可以表现出波动特性,导致干涉图案,这对于理解物质的双重性质至关重要。此外,发射电子的研究在材料科学领域也至关重要。研究人员调查不同材料如何与电子相互作用,以及如何根据特定应用调整发射特性。例如,新半导体的发展在很大程度上依赖于理解发射电子在各种条件下的行为,从而影响电子设备的性能。总之,发射电子的概念是科学和技术许多领域的基础。从日常电子设备的工作到量子力学的先进研究,理解和操纵发射电子的能力为我们打开了一个可能性世界。随着我们继续探索原子和亚原子行为的复杂性,发射电子的重要性无疑将始终处于科学探索和技术进步的前沿。
相关单词