electron spin resonance

简明释义

电子自旋共振

英英释义

Electron spin resonance (ESR) is a spectroscopic technique that detects the presence of unpaired electrons in a sample by measuring their magnetic moments when subjected to an external magnetic field.

电子自旋共振(ESR)是一种光谱技术,通过测量在外部磁场下未成对电子的磁矩来检测样品中未成对电子的存在。

例句

1.Using electron spin resonance (电子自旋共振), scientists can identify the structure of complex organic compounds.

科学家可以利用电子自旋共振电子自旋共振)识别复杂有机化合物的结构。

2.Researchers used electron spin resonance (电子自旋共振) to investigate the magnetic properties of materials at room temperature.

研究人员使用电子自旋共振电子自旋共振)来研究材料在室温下的磁性。

3.In chemistry, electron spin resonance (电子自旋共振) is a powerful tool for detecting unpaired electrons.

在化学中,电子自旋共振电子自旋共振)是检测未配对电子的强大工具。

4.The study of free radicals often employs electron spin resonance (电子自旋共振) to analyze their properties.

自由基的研究通常使用电子自旋共振电子自旋共振)来分析它们的特性。

5.The application of electron spin resonance (电子自旋共振) in biology helps to understand the behavior of biomolecules.

在生物学中应用电子自旋共振电子自旋共振)有助于理解生物分子的行为。

作文

Electron spin resonance (ESR) is a powerful analytical technique used in various fields of science, particularly in chemistry and physics. It is based on the principle that certain unpaired electrons in a sample can absorb microwave radiation when exposed to a magnetic field. This phenomenon occurs due to the intrinsic property of electrons known as 'spin,' which can be thought of as a form of angular momentum. When an external magnetic field is applied, the energy levels of these unpaired electrons split, allowing them to transition between different states upon absorbing energy from the microwave radiation. The resulting signals provide valuable information about the electronic environment of the unpaired electrons, making ESR a crucial tool for studying free radicals, transition metal complexes, and other paramagnetic species.The technique of electron spin resonance has a wide range of applications, including the study of reaction mechanisms in organic chemistry, the investigation of biomolecules, and the analysis of materials. In organic chemistry, ESR can help chemists understand the behavior of free radicals, which are highly reactive species that play significant roles in chemical reactions, including polymerization and oxidation processes. By analyzing the ESR spectra, researchers can gain insights into the stability and reactivity of these radicals, leading to a better understanding of the underlying chemical processes.In biochemistry, electron spin resonance is employed to investigate the structure and dynamics of biomolecules such as proteins and nucleic acids. For instance, ESR can be used to study the interactions between proteins and their ligands, providing information about binding sites and conformational changes. This knowledge is essential for drug design and development, as it allows scientists to create more effective therapeutic agents by targeting specific molecular interactions.Moreover, ESR is not limited to biological systems; it is also widely used in materials science. Researchers utilize electron spin resonance to characterize the properties of new materials, such as polymers, nanomaterials, and superconductors. By examining the ESR signals, scientists can infer information about the distribution and mobility of unpaired electrons within these materials, which is critical for understanding their electrical, magnetic, and optical properties.One of the advantages of electron spin resonance is its ability to detect low concentrations of paramagnetic species, making it an invaluable tool in various research domains. However, the technique also has its limitations. For instance, samples must be carefully prepared to avoid interfering signals, and the interpretation of ESR spectra can be complex, requiring expertise and experience.In conclusion, electron spin resonance is a versatile and powerful technique that has significantly contributed to our understanding of chemical and physical processes. Its applications span across multiple disciplines, from organic chemistry to materials science, highlighting its importance in advancing scientific knowledge. As technology continues to evolve, the capabilities of ESR are expected to expand, opening new avenues for research and innovation. Whether it is unraveling the mysteries of free radicals or characterizing novel materials, electron spin resonance remains a cornerstone of modern scientific inquiry.

电子自旋共振(ESR)是一种强大的分析技术,广泛应用于化学和物理等多个科学领域。它基于一个原理,即样品中某些未配对的电子在施加磁场时能够吸收微波辐射。这一现象源于电子的内在特性,称为“自旋”,可以被视为一种角动量。当施加外部磁场时,这些未配对电子的能级会发生分裂,从而使它们在吸收来自微波辐射的能量时能够在不同状态之间转变。由此产生的信号提供了关于未配对电子的电子环境的重要信息,使得ESR成为研究自由基、过渡金属络合物和其他顺磁物质的重要工具。电子自旋共振技术在多个领域有着广泛的应用,包括有机化学中的反应机制研究、生物分子的调查以及材料分析。在有机化学中,ESR能够帮助化学家理解自由基的行为,自由基是高度反应性的物质,在化学反应中扮演着重要角色,包括聚合和氧化过程。通过分析ESR光谱,研究人员可以深入了解这些自由基的稳定性和反应性,从而更好地理解其背后的化学过程。在生物化学中,电子自旋共振被用来研究蛋白质和核酸等生物分子的结构和动态。例如,ESR可用于研究蛋白质与其配体之间的相互作用,提供关于结合位点和构象变化的信息。这些知识对于药物设计和开发至关重要,因为它使科学家能够通过针对特定的分子相互作用来创造更有效的治疗剂。此外,ESR不仅限于生物系统;它在材料科学中也得到了广泛应用。研究人员利用电子自旋共振来表征新材料的性质,如聚合物、纳米材料和超导体。通过检查ESR信号,科学家可以推断出这些材料中未配对电子的分布和运动性的信息,这对于理解其电学、磁学和光学性质至关重要。电子自旋共振的一个优点是能够检测低浓度的顺磁物质,使其成为各个研究领域中不可或缺的工具。然而,该技术也存在一些局限性。例如,样品必须经过仔细准备,以避免干扰信号,而ESR光谱的解释可能比较复杂,需要专业知识和经验。总之,电子自旋共振是一种多功能且强大的技术,显著推动了我们对化学和物理过程的理解。其应用跨越多个学科,从有机化学到材料科学,突显了其在推进科学知识方面的重要性。随着技术的不断发展,ESR的能力预计将进一步扩展,为研究和创新开辟新的途径。无论是揭示自由基的奥秘,还是表征新颖材料,电子自旋共振始终是现代科学探究的基石。

相关单词

spin

spin详解:怎么读、什么意思、用法