electron hole avalanche

简明释义

电子 空穴雪崩

英英释义

An electron hole avalanche refers to a phenomenon in semiconductor physics where a large number of electron-hole pairs are generated in a material, typically due to the impact ionization process, leading to a rapid increase in current.

电子孔雪崩是指在半导体物理中,由于撞击电离过程,材料中产生大量电子-孔对的现象,这导致电流迅速增加。

例句

1.The electron hole avalanche (电子孔雪崩) process is crucial for understanding how photodetectors operate under high light conditions.

理解在高光照条件下光电探测器如何工作的过程中,electron hole avalanche电子孔雪崩)过程至关重要。

2.Researchers are studying the effects of electron hole avalanche (电子孔雪崩) in organic semiconductors to improve their efficiency.

研究人员正在研究有机半导体中electron hole avalanche电子孔雪崩)的影响,以提高其效率。

3.When a reverse bias is applied, the electron hole avalanche (电子孔雪崩) effect can cause breakdown in diodes.

当施加反向偏置时,electron hole avalanche电子孔雪崩)效应可能导致二极管击穿。

4.In semiconductor physics, the phenomenon known as electron hole avalanche (电子孔雪崩) can significantly affect the behavior of devices.

在半导体物理中,称为electron hole avalanche电子孔雪崩)的现象可以显著影响器件的行为。

5.The electron hole avalanche (电子孔雪崩) mechanism can lead to increased current flow in certain electronic components.

在某些电子元件中,electron hole avalanche电子孔雪崩)机制可以导致电流流动增加。

作文

The phenomenon of electron hole avalanche is a crucial concept in the field of semiconductor physics and optoelectronics. Understanding this concept requires a grasp of some fundamental principles of how semiconductors operate. Semiconductors are materials that have electrical conductivity between that of a conductor and an insulator. They play a vital role in modern electronics, being the foundation for devices such as transistors, diodes, and photovoltaic cells.At the heart of semiconductor operation is the idea of charge carriers, which include electrons and holes. Electrons are negatively charged particles, while holes can be thought of as the absence of an electron in the valence band of a semiconductor, effectively acting as positive charge carriers. The behavior of these charge carriers under various conditions leads to different electronic properties and functionalities.When a semiconductor is subjected to a strong external electric field, it can lead to a cascade effect known as electron hole avalanche (电子孔雪崩). This occurs when free electrons gain enough energy from the electric field to collide with lattice atoms, knocking additional electrons loose and creating more holes. As this process continues, it results in an exponential increase in the number of charge carriers, leading to a dramatic rise in current flow.The electron hole avalanche process is particularly significant in devices such as avalanche photodiodes and Zener diodes. In avalanche photodiodes, the ability to generate a large number of charge carriers from a single photon makes them highly sensitive detectors of light. These devices exploit the electron hole avalanche mechanism to amplify weak optical signals, enabling applications in fiber optic communications and imaging systems.On the other hand, Zener diodes utilize the electron hole avalanche effect for voltage regulation. When reverse-biased beyond a certain breakdown voltage, the avalanche effect allows the diode to maintain a stable output voltage despite variations in input current. This property is essential in power supply circuits where consistent voltage levels are required.However, the electron hole avalanche phenomenon is not without its challenges. The uncontrolled generation of charge carriers can lead to device failure due to overheating or excessive current flow. Therefore, understanding and managing this effect is critical in the design and application of semiconductor devices. Engineers must carefully consider the operating conditions and material properties to ensure that devices function reliably without succumbing to the adverse effects of avalanche breakdown.In conclusion, the concept of electron hole avalanche is fundamental to the operation of many semiconductor devices. It highlights the intricate relationship between electric fields, charge carriers, and material properties in determining the behavior of electronic components. As technology continues to advance, the understanding of such phenomena will be essential for the development of more efficient and reliable electronic systems. Whether in communication technologies, power management, or sensor applications, the implications of electron hole avalanche will undoubtedly play a pivotal role in shaping the future of electronics.

“电子孔雪崩”现象是半导体物理学和光电学领域的一个关键概念。理解这个概念需要掌握一些半导体运作的基本原理。半导体是导体和绝缘体之间具有电导率的材料。它们在现代电子学中发挥着至关重要的作用,是晶体管、二极管和光伏电池等设备的基础。半导体运作的核心是载流子的概念,包括电子和孔。电子是带负电的粒子,而孔可以被视为半导体价带中缺失电子的地方,实际上充当正电荷载流子。这些载流子在不同条件下的行为导致了不同的电子特性和功能。当半导体受到强外部电场的影响时,会导致一种称为电子孔雪崩electron hole avalanche)的级联效应。当自由电子从电场中获得足够的能量与晶格原子碰撞时,会击打出额外的电子并产生更多的孔。随着这一过程的持续进行,载流子的数量呈指数级增长,导致电流流动的急剧增加。电子孔雪崩过程在雪崩光电二极管和齐纳二极管等设备中尤为重要。在雪崩光电二极管中,从单个光子产生大量载流子的能力使其成为高度灵敏的光探测器。这些设备利用电子孔雪崩机制来放大微弱的光信号,使其在光纤通信和成像系统中得到应用。另一方面,齐纳二极管利用电子孔雪崩效应进行电压调节。当反向偏置超过某个击穿电压时,雪崩效应使二极管能够在输入电流变化时保持稳定的输出电压。这一特性在电源电路中至关重要,因为这些电路需要一致的电压水平。然而,电子孔雪崩现象并非没有挑战。载流子的无控制生成可能导致设备因过热或过大电流而失效。因此,理解和管理这一效应在半导体设备的设计和应用中至关重要。工程师必须仔细考虑操作条件和材料特性,以确保设备在不遭受雪崩击穿不利影响的情况下可靠运行。总之,电子孔雪崩概念是许多半导体设备运作的基础。它突显了电场、载流子和材料特性之间复杂关系在确定电子元件行为中的重要性。随着技术的不断进步,对这种现象的理解对于开发更高效、更可靠的电子系统至关重要。无论是在通信技术、电源管理还是传感器应用中,电子孔雪崩的影响无疑将在塑造电子学的未来中发挥关键作用。

相关单词

hole

hole详解:怎么读、什么意思、用法

avalanche

avalanche详解:怎么读、什么意思、用法