doppler width

简明释义

多普勒宽度

英英释义

Doppler width refers to the broadening of spectral lines due to the Doppler effect, which occurs when there is relative motion between the source of light and the observer. This effect causes the wavelengths of emitted light to shift, resulting in a range of frequencies being observed.

多普勒宽度是指由于多普勒效应造成的光谱线的展宽,当光源与观察者之间存在相对运动时会发生这种效应。这种效应导致发射光的波长发生偏移,从而使观察到的频率范围变得更广。

例句

1.Measuring the Doppler width 多普勒宽度 allows scientists to infer the motion of celestial bodies.

测量Doppler width 多普勒宽度 使科学家能够推断天体的运动。

2.Astronomers often use the Doppler width 多普勒宽度 to analyze the spectral lines of distant stars.

天文学家常常使用Doppler width 多普勒宽度 来分析遥远恒星的光谱线。

3.The Doppler width 多普勒宽度 can indicate the temperature and density of a gas in astrophysical studies.

在天体物理研究中,Doppler width 多普勒宽度 可以指示气体的温度和密度。

4.The measurement of the Doppler width 多普勒宽度 is essential for understanding the velocity distribution of particles in a gas.

测量Doppler width 多普勒宽度 对于理解气体中粒子的速度分布至关重要。

5.In radar technology, the Doppler width 多普勒宽度 helps in determining the speed of moving objects.

在雷达技术中,Doppler width 多普勒宽度 有助于确定移动物体的速度。

作文

The concept of doppler width is integral to the field of astrophysics and spectroscopy. It refers to the broadening of spectral lines due to the Doppler effect, which occurs when there is a relative motion between the source of light and the observer. This phenomenon can be observed in various contexts, such as in the study of distant stars, galaxies, and even in laboratory experiments involving gas molecules. Understanding doppler width allows scientists to glean important information about the velocity and composition of celestial objects.When light emitted from a moving object reaches an observer, the frequency of the light waves changes depending on the direction of the object's motion. If the object is moving towards the observer, the light waves are compressed, resulting in a higher frequency, known as blue shift. Conversely, if the object is moving away, the light waves are stretched, leading to a lower frequency, referred to as redshift. The doppler width quantifies this broadening effect, which is crucial for analyzing the movement of stars and galaxies in the universe.In practical applications, the measurement of doppler width can provide insights into the temperature and density of astronomical bodies. For instance, in a gas cloud, the thermal motion of particles contributes to the broadening of spectral lines. By studying the doppler width, astronomers can infer the kinetic temperature of the gas, as a hotter gas will exhibit greater motion and consequently a wider spectral line. This relationship between temperature and doppler width is fundamental in astrophysical research, enabling scientists to understand the physical conditions of various celestial environments.Moreover, doppler width is not limited to astrophysics; it also plays a significant role in atmospheric studies and medical imaging technologies. In meteorology, the Doppler effect is utilized in radar systems to detect the movement of precipitation. The doppler width of the radar signals helps meteorologists determine the speed and direction of storms, which is essential for weather forecasting and public safety.In the medical field, Doppler ultrasound technology employs the principles of doppler width to assess blood flow in patients. By analyzing the frequency shifts of ultrasound waves reflected off moving blood cells, healthcare providers can evaluate cardiovascular health and detect abnormalities. The ability to measure doppler width in this context is invaluable, as it aids in diagnosing conditions such as blockages or irregular blood flow.In summary, the understanding of doppler width encompasses a wide range of scientific disciplines, from astrophysics to medicine. Its implications are profound, allowing researchers and practitioners to analyze motion, temperature, and density across different contexts. As technology continues to advance, the applications of doppler width will undoubtedly expand, leading to new discoveries and innovations that enhance our understanding of the universe and improve human health. The study of doppler width exemplifies the interconnectedness of science, illustrating how a single concept can bridge multiple fields and contribute to our collective knowledge.

“多普勒宽度”这一概念在天体物理学和光谱学领域中至关重要。它指的是由于多普勒效应导致的光谱线的展宽,当光源与观察者之间存在相对运动时,这一现象就会发生。这种现象可以在多个背景下观察到,比如在研究遥远的恒星、星系,甚至在涉及气体分子的实验室实验中。理解“多普勒宽度”使科学家能够获取关于天体速度和成分的重要信息。当来自移动物体的光到达观察者时,光波的频率会根据物体运动的方向而变化。如果物体朝向观察者移动,光波被压缩,从而导致频率升高,这称为蓝移。相反,如果物体远离观察者移动,光波被拉伸,导致频率降低,这称为红移。“多普勒宽度”量化了这种展宽效应,这对于分析宇宙中恒星和星系的运动至关重要。在实际应用中,“多普勒宽度”的测量可以提供有关天体温度和密度的见解。例如,在气体云中,粒子的热运动会导致光谱线的展宽。通过研究“多普勒宽度”,天文学家可以推断气体的动能温度,因为温度较高的气体会表现出更大的运动,因此光谱线会更宽。这种温度与“多普勒宽度”之间的关系在天体物理研究中是基础的,使科学家能够理解各种天体环境的物理条件。此外,“多普勒宽度”不仅限于天体物理学;它在大气研究和医学成像技术中也发挥着重要作用。在气象学中,多普勒效应被用于雷达系统,以检测降水的运动。“多普勒宽度”的雷达信号帮助气象学家确定风暴的速度和方向,这对天气预报和公众安全至关重要。在医学领域,多普勒超声技术利用“多普勒宽度”的原理来评估患者的血流。通过分析反射回来的超声波频率变化,医疗提供者可以评估心血管健康并检测异常。在这个背景下测量“多普勒宽度”的能力是无价的,因为它有助于诊断诸如阻塞或不规则血流等情况。总之,对“多普勒宽度”的理解涵盖了广泛的科学领域,从天体物理学到医学。其影响深远,使研究人员和从业者能够分析不同背景下的运动、温度和密度。随着技术的不断进步,“多普勒宽度”的应用无疑会扩展,带来新的发现和创新,增强我们对宇宙的理解并改善人类健康。“多普勒宽度”的研究体现了科学的相互关联性,说明了一个概念如何跨越多个领域并为我们的集体知识做出贡献。

相关单词

width

width详解:怎么读、什么意思、用法