totient

简明释义

[ˈtəʊtɪənt][ˈtoʊʃənt]

欧拉函数

英英释义

In number theory, a totient is a function that counts the positive integers up to a given integer n that are relatively prime to n.

在数论中,totient是一个函数,用于计算小于或等于给定整数n的正整数中与n互质的数量。

单词用法

euler's totient theorem

欧拉托伊特定理

the totient function

托伊特函数

find the totient

找到托伊特值

totient of a prime number

质数的托伊特值

totient of n

n 的托伊特值

calculate the totient function

计算托伊特函数

同义词

Euler's totient function

欧拉函数

The Euler's totient function φ(n) counts the positive integers up to n that are relatively prime to n.

欧拉函数 φ(n) 计算与 n 互质的正整数的数量。

phi function

φ函数

In number theory, the phi function is used extensively in the study of prime numbers and their properties.

在数论中,φ函数广泛用于研究素数及其性质。

反义词

composite

合成数

A composite number has more than two distinct positive divisors.

合成数有超过两个不同的正因子。

non-prime

非素数

The number 4 is a non-prime because it can be divided by 1, 2, and 4.

数字4是一个非素数,因为它可以被1、2和4整除。

例句

1.If, on the other hand, you want the value of the totient for some large number for which you have the factorization, pass the argument as sequence of (prime, exponent) pairs.

另一方面,如果你想要一个大的您要进行因式分解的数字,将参数作为(素数,指数)对的序列传递。

2.If, on the other hand, you want the value of the totient for some large number for which you have the factorization, pass the argument as sequence of (prime, exponent) pairs.

另一方面,如果你想要一个大的您要进行因式分解的数字,将参数作为(素数,指数)对的序列传递。

3.In these cryptosystems, Euler totient functions play an important role.

在这些密码体制中,欧拉函数起着重要作用。

4.This paper lists some important and interesting properties of the Euter totient functions, which have the potential use in the design and analysis of cryptosystems.

本文给出了欧拉函数的一些重要而有趣的性质,这些性质可对密码的设计与分析起指导作用。

5.For the number 12, the totient 欧拉函数 is 4, as there are four numbers less than 12 that are coprime to it.

对于数字 12,totient 欧拉函数 为 4,因为有四个小于 12 的数字与其互质。

6.The formula for calculating the totient 欧拉函数 of a prime number p is simply p - 1.

计算素数 p 的 totient 欧拉函数 的公式仅为 p - 1。

7.The totient 欧拉函数 plays a crucial role in RSA encryption algorithms.

在 RSA 加密算法中,totient 欧拉函数 起着至关重要的作用。

8.In number theory, the totient 欧拉函数 function is used to count the integers up to a given integer that are coprime to it.

在数论中,totient 欧拉函数 用于计算小于给定整数且与其互质的整数个数。

9.To find the totient 欧拉函数 of a composite number, we can use its prime factorization.

要找到一个合成数的 totient 欧拉函数,我们可以使用它的质因数分解。

作文

In the realm of number theory, one encounters various fascinating concepts that help us understand the properties of integers. Among these concepts, the term totient (中文释义:欧拉函数) stands out as a significant function that plays a crucial role in number theory, particularly in relation to prime numbers and their distributions. The totient function, often denoted as φ(n), is defined as the count of positive integers up to n that are relatively prime to n. This means that the integers counted by the totient function share no common factors with n other than 1.To illustrate the importance of the totient function, consider the number 9. The positive integers less than or equal to 9 are 1, 2, 3, 4, 5, 6, 7, 8, and 9. Among these, the numbers that are relatively prime to 9 are 1, 2, 4, 5, 7, and 8. Therefore, φ(9) equals 6, since there are six integers that meet the criteria. This property of the totient function reveals how it can be used to analyze the structure of numbers and their relationships.The totient function is not just a theoretical construct; it has practical applications in fields such as cryptography. For instance, in the RSA encryption algorithm, the security of the system relies on the properties of prime numbers and the totient function. In this context, the totient function helps determine the public and private keys used for encrypting and decrypting messages. The choice of two large prime numbers p and q allows for the calculation of n = p*q, and the totient φ(n) = (p-1)(q-1). This relationship is fundamental to the strength of RSA encryption, as it ensures that the keys generated are difficult to factorize, thus providing security against unauthorized access.Moreover, the totient function exhibits interesting properties that mathematicians have explored over the years. For example, if p is a prime number, then φ(p) = p - 1, because all integers less than p are relatively prime to p. Additionally, if m and n are coprime integers, then φ(m*n) = φ(m) * φ(n). These properties not only help in calculating the totient for composite numbers but also enhance our understanding of the multiplicative nature of the function itself.As we delve deeper into number theory, the totient function serves as a bridge connecting various mathematical concepts. Its interplay with prime numbers, its application in cryptography, and its intriguing properties make it a vital topic of study for anyone interested in mathematics. Furthermore, the exploration of the totient function leads to a greater appreciation of the elegance and complexity of numbers, encouraging students and enthusiasts alike to engage with the subject on a deeper level.In conclusion, the concept of the totient (欧拉函数) is not merely an abstract idea confined to textbooks; it is a powerful tool that opens doors to a multitude of mathematical inquiries and real-world applications. Whether one is studying number theory for academic purposes or seeking to understand the foundations of modern cryptography, the totient function remains an essential element of the mathematical landscape, embodying the beauty and intricacy of numbers.

在数论的领域中,我们会遇到各种迷人的概念,这些概念帮助我们理解整数的性质。在这些概念中,术语totient(中文释义:欧拉函数)作为一个重要的函数脱颖而出,在数论中扮演着关键角色,尤其是与素数及其分布相关。totient函数通常用φ(n)表示,定义为小于或等于n的正整数中,与n互质的整数的数量。这意味着被totient函数计数的整数除了1之外与n没有共同因子。为了说明totient函数的重要性,考虑数字9。小于或等于9的正整数有1、2、3、4、5、6、7、8和9。在这些数中,与9互质的数有1、2、4、5、7和8。因此,φ(9)等于6,因为有六个整数满足这一条件。这个totient函数的性质揭示了它如何被用来分析数字的结构及其关系。totient函数不仅仅是一个理论构造;它在密码学等领域有实际应用。例如,在RSA加密算法中,系统的安全性依赖于素数及totient函数的性质。在这种情况下,totient函数帮助确定用于加密和解密消息的公钥和私钥。选择两个大的素数p和q可以计算出n = p*q,而totient φ(n) = (p-1)(q-1)。这个关系对RSA加密的强度至关重要,因为它确保生成的密钥难以因式分解,从而提供对未经授权访问的安全性。此外,totient函数展现出有趣的性质,数学家们多年来对此进行了探索。例如,如果p是一个素数,则φ(p) = p - 1,因为小于p的所有整数都与p互质。此外,如果m和n是互质整数,则φ(m*n) = φ(m) * φ(n)。这些性质不仅有助于计算复合数的totient,还增强了我们对该函数自身乘法性质的理解。随着我们深入研究数论,totient函数作为连接各种数学概念的桥梁。它与素数的相互作用、在密码学中的应用以及其引人入胜的性质,使其成为任何对数学感兴趣的人必须研究的重要主题。此外,探索totient函数使我们更深刻地欣赏数字的优雅和复杂性,鼓励学生和爱好者更深入地参与这一学科。总之,totient(欧拉函数)的概念不仅仅是一本教科书中抽象的想法;它是一个强大的工具,为无数数学探究和现实世界应用打开了大门。无论是出于学术目的学习数论,还是寻求理解现代密码学的基础,totient函数始终是数学领域的重要组成部分,体现了数字的美丽和复杂性。