crystal indices

简明释义

密勒指数

英英释义

Crystal indices are numerical values that represent the orientation and symmetry of a crystal lattice in crystallography, typically defined by Miller indices.

晶体指数是表示晶体晶格的取向和对称性的数值,通常由米勒指数定义。

例句

1.When analyzing the diffraction pattern, we often refer to the crystal indices for accurate measurements.

在分析衍射图案时,我们通常参考晶体指数以获得准确的测量。

2.Different crystal indices can signify different crystallographic axes.

不同的晶体指数可以表示不同的晶体轴。

3.In mineralogy, crystal indices are essential for classifying different types of crystals.

在矿物学中,晶体指数对分类不同类型的晶体至关重要。

4.The study of crystal indices helps in identifying the symmetry of the crystal structure.

晶体指数的研究有助于识别晶体结构的对称性。

5.The crystal indices indicate how light interacts with the crystal lattice.

晶体指数表示光如何与晶体晶格相互作用。

作文

The study of crystals and their properties is a fascinating field that combines elements of chemistry, physics, and materials science. One of the key concepts in understanding how crystals behave is the idea of crystal indices, which are used to describe the orientation of the crystal lattice. In essence, crystal indices are a set of numbers that define the direction of the faces of a crystal in relation to its internal structure. This concept is crucial for scientists and engineers who work with crystalline materials, as it helps them predict how these materials will react under different conditions.Crystals are solid materials whose atoms are arranged in a highly ordered, repeating pattern. This regular arrangement gives rise to unique physical properties, such as symmetry, cleavage, and optical characteristics. The crystal indices system allows researchers to communicate effectively about the orientation of these crystals. The most common system used is the Miller index, which uses three integers to represent the orientation of a crystal face. For example, a crystal face with Miller indices (1, 0, 0) indicates a specific orientation in the three-dimensional space of the crystal lattice.Understanding crystal indices is particularly important in the field of mineralogy, where scientists classify minerals based on their crystalline structures. Each mineral has a distinct set of crystal indices that reflect its unique arrangement of atoms. This classification helps geologists identify minerals in rock samples and understand their formation processes. Moreover, the crystal indices can influence the physical properties of minerals, such as hardness and cleavage, which are essential for various industrial applications.In materials science, crystal indices play a vital role in the development of new materials. Engineers and scientists often manipulate the crystal structure of materials to enhance their properties for specific applications. For instance, semiconductors, which are crucial in electronics, rely heavily on precise control of their crystalline structure. By understanding the crystal indices of these materials, researchers can tailor their properties to improve performance in devices like transistors and diodes.Additionally, the optical properties of crystals are significantly affected by their crystal indices. The way light interacts with a crystal is influenced by its internal structure, which is described by these indices. For example, birefringence, a phenomenon where a crystal has different refractive indices depending on the light's polarization direction, is directly related to the crystal indices. This property is exploited in various optical applications, including polarizing filters and liquid crystal displays (LCDs).In conclusion, the concept of crystal indices is fundamental to the study of crystallography and material science. It provides a framework for understanding the orientation and properties of crystals, which is essential for various scientific and industrial applications. As technology continues to advance, the importance of accurately determining and utilizing crystal indices will only grow, leading to new discoveries and innovations in materials engineering and other fields. By mastering this concept, students and professionals can better appreciate the intricate relationships between crystal structure and material properties, paving the way for future advancements in science and technology.

晶体及其性质的研究是一个迷人的领域,它结合了化学、物理和材料科学的元素。在理解晶体行为的过程中,一个关键概念是晶体指数,它用于描述晶体晶格的方向。简单来说,晶体指数是一组数字,用于定义晶体面相对于其内部结构的方向。这个概念对于从事晶体材料工作的科学家和工程师至关重要,因为它帮助他们预测这些材料在不同条件下的反应。晶体是原子以高度有序、重复模式排列的固体材料。这种规则的排列产生了独特的物理特性,如对称性、解理和光学特性。晶体指数系统使研究人员能够有效地交流这些晶体的方向。最常用的系统是米勒指数,它使用三个整数来表示晶体面的方向。例如,米勒指数为(1, 0, 0)的晶体面表示晶体晶格三维空间中的特定方向。理解晶体指数在矿物学领域尤为重要,科学家根据晶体结构对矿物进行分类。每种矿物都有一组独特的晶体指数,反映其原子的独特排列。这种分类帮助地质学家识别岩石样本中的矿物,并了解它们的形成过程。此外,晶体指数可以影响矿物的物理特性,例如硬度和解理,这对于各种工业应用至关重要。在材料科学中,晶体指数在新材料的开发中发挥着重要作用。工程师和科学家经常操纵材料的晶体结构,以增强其特定应用的性能。例如,半导体在电子设备中至关重要,严重依赖其晶体结构的精确控制。通过理解这些材料的晶体指数,研究人员可以调整其性能,以提高晶体管和二极管等设备的性能。此外,晶体的光学特性受到其晶体指数的显著影响。光与晶体的相互作用方式受到其内部结构的影响,而这一点由这些指数描述。例如,双折射现象,即晶体在不同光的偏振方向上具有不同的折射率,与晶体指数直接相关。这个特性被广泛应用于各种光学应用,包括偏振滤光片和液晶显示器(LCD)。总之,晶体指数的概念是晶体学和材料科学研究的基础。它提供了一个理解晶体的方向和性质的框架,这对于各种科学和工业应用至关重要。随着技术的不断进步,准确确定和利用晶体指数的重要性只会增加,从而导致材料工程和其他领域的新发现和创新。通过掌握这一概念,学生和专业人士可以更好地理解晶体结构与材料性质之间的复杂关系,为未来科学和技术的进步铺平道路。

相关单词

crystal

crystal详解:怎么读、什么意思、用法

indices

indices详解:怎么读、什么意思、用法