anisotropic
简明释义
英[ænˌaɪsəʊˈtrɒpɪk]美[ˌænaɪsəˈtrɑːpɪk]
adj. [物] 各向异性的;[物] 非均质的
英英释义
Having different properties or behaviors in different directions. | 在不同方向上具有不同的性质或行为。 |
单词用法
各向异性材料;蛤异性物质 |
同义词
反义词
各向同性的 | An isotropic material has the same properties in all directions. | 各向同性材料在所有方向上的性质相同。 |
例句
1.This paper has Studied anisotropic etching mechanism of St in KOH scution by using collision theory.
本文应用碰撞理论研究了硅在KOH溶液中各向异性腐蚀的机理。
2.For anisotropic materials Fourier's law must be formulated in a more generalized form.
对于各向异性的物质来说,傅里叶定律必须改写成具有更普遍意义的形式。
3.A novel method for measuring the anisotropic etch rate distributions of Si is described.
介绍了一种测定硅各向异性腐蚀速率分布的新方法。
4.The inverse problem is of importance in research of characteristic parameters of anisotropic medium.
介质参数测试的关键理论步骤是求解相应的电磁逆问题。
5.Determining breakdown pressure in an anisotropic formation is important in oil and gas exploration and production.
准确计算各向异性地层中岩石破裂压力在石油勘探开发中有着十分重要的作用。
6.This paper introduces the computer simulation for the anisotropic etching used in micro-machining of sensors.
本文介绍传感器微机械加工中使用的各向异性腐蚀的计算机模拟。
7.The process of axisymmetric drawing of anisotropic materials is considered.
研究了轴对称拉伸各向异性材料的过程。
8.Moreover, we improved the inversion result by using anisotropic diffusion method.
此外,采用各向异性扩散法进行平滑处理,改善反演结果。
9.The anisotropic 各向异性 behavior of the fabric affects how it drapes and flows when worn.
面料的各向异性行为影响其穿着时的垂坠感和流动性。
10.Geologists study anisotropic 各向异性 rock formations to understand how they will respond to stress.
地质学家研究各向异性岩石构造,以了解它们对压力的反应。
11.The anisotropic 各向异性 thermal conductivity of the material makes it suitable for specific applications in electronics.
该材料的各向异性热导率使其适合于电子产品的特定应用。
12.The material exhibits anisotropic 各向异性 properties, meaning its strength varies depending on the direction of the applied force.
该材料表现出各向异性的性质,这意味着其强度取决于施加力的方向。
13.In engineering, we must consider the anisotropic 各向异性 characteristics of composite materials to ensure structural integrity.
在工程中,我们必须考虑复合材料的各向异性特性,以确保结构完整性。
作文
In the realm of materials science and engineering, understanding the properties of materials is crucial for various applications. One of the key concepts that engineers and scientists encounter is the term anisotropic, which refers to materials that exhibit different properties in different directions. This characteristic can significantly influence how a material behaves under various forces and conditions. For instance, in the case of wood, its strength and stiffness are greater along the grain than across it, making it an anisotropic material. This property must be taken into account when designing structures that utilize wood, as failing to do so could lead to structural weaknesses or failures.Another example of anisotropic behavior can be found in composite materials, which are engineered from two or more constituent materials with significantly different physical or chemical properties. These composites often display anisotropic characteristics, allowing engineers to tailor their properties for specific applications. For instance, carbon fiber reinforced polymers (CFRPs) are widely used in aerospace and automotive industries due to their high strength-to-weight ratio and anisotropic nature. By aligning the carbon fibers in a particular direction during manufacturing, engineers can create a material that is stronger in one direction while remaining lightweight, which is essential for performance in high-stress environments.Understanding anisotropic properties is not only important in engineering but also in other scientific fields such as geology and biology. In geology, the anisotropic nature of rock layers can affect the flow of groundwater and the stability of slopes. For example, sedimentary rocks may have varying permeability depending on their orientation, which can impact resource extraction and environmental management. Similarly, in biology, the anisotropic properties of tissues can influence how they respond to mechanical forces. For instance, muscle tissues are typically anisotropic in nature, exhibiting different strengths and responses depending on the direction of the applied force.In conclusion, the concept of anisotropic materials plays a vital role across various disciplines, influencing the design and functionality of numerous products and structures. Whether it is in the construction of buildings, the development of new composite materials, or the study of natural phenomena, recognizing and understanding anisotropic properties is essential for achieving optimal performance and safety. As technology continues to advance, the ability to manipulate and utilize anisotropic characteristics will likely lead to innovative solutions and enhancements in material performance, paving the way for future discoveries and applications in science and engineering.
在材料科学和工程的领域中,理解材料的特性对于各种应用至关重要。工程师和科学家所遇到的一个关键概念是术语各向异性,它指的是在不同方向上表现出不同特性的材料。这种特性会显著影响材料在各种力和条件下的行为。例如,在木材的情况下,其强度和刚度在纹理方向上大于横向,这使得它成为一种各向异性材料。在设计使用木材的结构时,必须考虑这一特性,因为如果不这样做,可能会导致结构的弱点或失败。另一个各向异性行为的例子可以在复合材料中找到,这些材料是由两种或多种具有显著不同物理或化学性质的组成材料工程而成。这些复合材料通常表现出各向异性特性,使工程师能够为特定应用量身定制其属性。例如,碳纤维增强聚合物(CFRP)因其高强度与重量比和各向异性特性而广泛用于航空航天和汽车工业。通过在制造过程中将碳纤维沿特定方向排列,工程师可以创建在一个方向上更强而保持轻量的材料,这对于在高应力环境中的性能至关重要。理解各向异性特性不仅在工程中重要,在地质学和生物学等其他科学领域也同样如此。在地质学中,岩石层的各向异性特性可能会影响地下水流动和坡度稳定性。例如,沉积岩的渗透性可能会根据其方向而有所不同,这可能会影响资源开采和环境管理。同样,在生物学中,组织的各向异性特性可能会影响它们对机械力的响应。例如,肌肉组织通常具有各向异性特性,在施加的力的方向不同的情况下表现出不同的强度和反应。总之,各向异性材料的概念在各个学科中发挥着重要作用,影响着无数产品和结构的设计和功能。无论是在建筑物的建设、复合材料的新开发还是自然现象的研究中,识别和理解各向异性特性对于实现最佳性能和安全性至关重要。随着技术的不断进步,操控和利用各向异性特性的能力可能会导致创新解决方案和材料性能的提升,为科学和工程领域的未来发现和应用铺平道路。