proteomic

简明释义

[prəˈtiː.ə.mɪk][proʊˈtiː.ə.mɪk]

n. 蛋白质组学

adj. 蛋白质生物学的

英英释义

Relating to the study of proteomes, which are the entire set of proteins expressed by a genome, cell, tissue, or organism at a certain time.

与蛋白质组的研究相关,蛋白质组是指在特定时间内由基因组、细胞、组织或生物体表达的所有蛋白质的集合。

单词用法

proteomic data

蛋白质组数据

quantitative proteomic

定量蛋白质组学

comparative proteomic

比较蛋白质组学

high-throughput proteomic

高通量蛋白质组学

proteomic approach

蛋白质组学方法

proteomic techniques

蛋白质组学技术

integrated proteomic

综合蛋白质组学

clinical proteomic

临床蛋白质组学

同义词

protein analysis

蛋白质分析

Proteomic techniques are essential for understanding cellular functions.

蛋白质组学技术对于理解细胞功能至关重要。

proteome study

蛋白组研究

Protein analysis can reveal biomarkers for diseases.

蛋白质分析可以揭示疾病的生物标志物。

protein profiling

蛋白质谱

The proteome study provides insights into the complexity of protein interactions.

蛋白组研究提供了对蛋白质相互作用复杂性的深入了解。

proteomics research

蛋白质组学研究

Protein profiling is used to compare healthy and diseased states.

蛋白质谱用于比较健康和疾病状态。

反义词

genomic

基因组的

Genomic sequencing has revolutionized our understanding of genetic diseases.

基因组测序彻底改变了我们对遗传疾病的理解。

metabolomic

代谢组的

Metabolomic analysis provides insights into the metabolic state of an organism.

代谢组分析提供了对生物体代谢状态的洞察。

例句

1.In order to assure the reproducibility of results, establishing a steady method is very crucial in proteomic study.

在蛋白质组研究中,建立一个稳定的方法十分重要,以保证结果的重现性。

2.Proteomic analyses of blood and plasma have turned up protein biomarkers for diseases that have not survived closer scrutiny, says Nilsson.

血液和血浆的蛋白质组分析找到了某些疾病的蛋白质生物标记物,但目前这些发现尚未通过最后的核对。

3.Conclusions Further analysis on these proteins in the proteomic pattern will be helpful to screen tumor markers for HBV related HCC.

结论对蛋白质组模式中的蛋白质点进一步分析有助于研究HBV相关性hcc的肿瘤标记。

4.Thus, we have used a proteomic approach to study diabetes-induced changes in cell regulation of retinal metabolism.

因此,我们使用了一种蛋白生物学的方法来研究在视网膜代谢细胞调节中的糖尿病诱发变化。

5.Proteomic engineering is one of the essential discipline of biotechnology.

蛋白质体工程学,是现代生物科技必要的知识。

6.To establish a set of two-dimensional polyacrylamide gel electrophoresis (2-DE) techniques for proteomic research of hepatocellular carcinoma (HCC) tissues.

优化双向凝胶电泳的实验步骤,总结出一套适用于原发性肝癌组织的双向凝胶电泳技术。

7.The latest research in proteomic 蛋白质组学 analysis has revealed new biomarkers for cancer.

最新的蛋白质组学研究揭示了癌症的新生物标志物。

8.Scientists are using proteomic 蛋白质组学 techniques to understand the effects of drugs on cellular functions.

科学家们正在使用蛋白质组学技术来理解药物对细胞功能的影响。

9.Advancements in proteomic 蛋白质组学 technologies have accelerated the discovery of new therapeutic targets.

蛋白质组学技术方面的进展加速了新治疗靶点的发现。

10.The lab specializes in proteomic 蛋白质组学 studies for understanding neurodegenerative diseases.

该实验室专注于蛋白质组学研究,以了解神经退行性疾病。

11.The proteomic 蛋白质组学 profiling of the samples showed significant differences between healthy and diseased tissues.

样本的蛋白质组学分析显示健康组织和病变组织之间存在显著差异。

作文

Proteomics is a branch of molecular biology that focuses on the study of proteins, particularly their functions and structures. This field has gained immense importance in recent years due to its potential applications in various areas such as medicine, biotechnology, and environmental science. Understanding the complexities of the proteome—the entire set of proteins expressed by an organism—can provide invaluable insights into biological processes and disease mechanisms. The term proteomic (蛋白质组学) refers to the comprehensive analysis of proteins, including their expression levels, modifications, interactions, and functions. Unlike genomics, which deals with genes and their sequences, proteomic (蛋白质组学) studies the dynamic changes in protein expression and activity in response to various conditions, such as stress, disease, or developmental stages. This makes it a crucial tool for understanding how organisms adapt to their environment and how diseases progress at the molecular level.One of the primary techniques used in proteomic (蛋白质组学) research is mass spectrometry. This powerful analytical tool allows scientists to identify and quantify proteins in complex mixtures, providing a detailed picture of the proteome. By comparing protein profiles from healthy and diseased tissues, researchers can identify biomarkers that may lead to early diagnosis or new therapeutic targets. For instance, in cancer research, proteomic (蛋白质组学) studies have revealed specific protein signatures associated with different cancer types, aiding in personalized medicine approaches.Another important aspect of proteomic (蛋白质组学) research is the study of post-translational modifications (PTMs). Proteins often undergo various modifications after translation, such as phosphorylation, glycosylation, and ubiquitination. These modifications can significantly affect protein function, stability, and interactions. Understanding PTMs is essential for deciphering cellular signaling pathways and how they are altered in diseases. In addition to its applications in health and disease, proteomic (蛋白质组学) research is also crucial in agriculture and environmental science. By studying the proteomes of crops, scientists can identify traits that confer resistance to pests or environmental stressors. This knowledge can be used to develop genetically modified organisms (GMOs) or improve traditional breeding programs. Furthermore, proteomic (蛋白质组学) techniques can help monitor environmental changes by analyzing the proteins present in various ecosystems, providing insights into biodiversity and ecosystem health.Despite its many advantages, the field of proteomic (蛋白质组学) faces several challenges. The complexity of the proteome, with its vast diversity of proteins and their interactions, makes data interpretation difficult. Moreover, the dynamic nature of protein expression requires advanced computational tools and bioinformatics approaches to analyze large datasets effectively. As technology continues to advance, however, the future of proteomic (蛋白质组学) research looks promising, with the potential to unlock new discoveries in biology and medicine.In conclusion, proteomic (蛋白质组学) is a vital field that enhances our understanding of proteins and their roles in life processes. Its applications range from medical diagnostics to agricultural improvements, highlighting its significance in addressing global challenges. As researchers continue to explore the depths of the proteome, we can expect exciting developments that will shape the future of science and healthcare.

蛋白质组学是分子生物学的一个分支,专注于蛋白质的研究,特别是它们的功能和结构。近年来,由于其在医学、生物技术和环境科学等多个领域的潜在应用,这一领域变得极为重要。理解蛋白质组的复杂性——即一个生物体表达的所有蛋白质的完整集合,可以为生物过程和疾病机制提供宝贵的见解。术语proteomic(蛋白质组学)指的是对蛋白质的全面分析,包括它们的表达水平、修饰、相互作用和功能。与基因组学不同,后者处理基因及其序列,proteomic(蛋白质组学)研究的是蛋白质表达和活性的动态变化,以应对各种条件,如压力、疾病或发育阶段。这使其成为理解生物体如何适应环境以及疾病如何在分子水平上进展的重要工具。在proteomic(蛋白质组学)研究中使用的主要技术之一是质谱。这种强大的分析工具使科学家能够识别和量化复杂混合物中的蛋白质,从而提供关于蛋白质组的详细图景。通过比较健康和患病组织的蛋白质特征,研究人员可以识别可能导致早期诊断或新的治疗靶点的生物标志物。例如,在癌症研究中,proteomic(蛋白质组学)研究揭示了与不同癌症类型相关的特定蛋白质特征,帮助个性化医疗方法的发展。proteomic(蛋白质组学)研究的另一个重要方面是对翻译后修饰(PTMs)的研究。蛋白质在翻译后经常经历各种修饰,例如磷酸化、糖基化和泛素化。这些修饰可以显著影响蛋白质的功能、稳定性和相互作用。理解PTMs对于解读细胞信号通路以及这些通路在疾病中如何被改变至关重要。除了在健康和疾病中的应用外,proteomic(蛋白质组学)研究在农业和环境科学中也至关重要。通过研究作物的蛋白质组,科学家可以识别出赋予抗虫害或环境压力抵抗力的特征。这些知识可用于开发转基因生物(GMO)或改进传统育种计划。此外,proteomic(蛋白质组学)技术可以通过分析各种生态系统中存在的蛋白质来帮助监测环境变化,提供关于生物多样性和生态系统健康的见解。尽管有许多优点,proteomic(蛋白质组学)领域仍面临一些挑战。蛋白质组的复杂性、庞大的蛋白质多样性及其相互作用使数据解释变得困难。此外,蛋白质表达的动态特性需要先进的计算工具和生物信息学方法来有效分析大型数据集。然而,随着技术的不断进步,proteomic(蛋白质组学)研究的未来看起来充满希望,有潜力揭示生物学和医学的新发现。总之,proteomic(蛋白质组学)是一个重要的领域,增强了我们对蛋白质及其在生命过程中的作用的理解。它的应用范围从医学诊断到农业改进,突显了其在应对全球挑战中的重要性。随着研究人员继续探索蛋白质组的深度,我们可以期待激动人心的发展,这将塑造科学和医疗的未来。