transmission electron microscope

简明释义

透射电子显微镜

英英释义

A transmission electron microscope (TEM) is a type of electron microscope that uses a beam of electrons transmitted through a specimen to form an image.

透射电子显微镜(TEM)是一种电子显微镜,利用穿透样本的电子束形成图像。

例句

1.The transmission electron microscope revealed unexpected details about the material's composition.

透射电子显微镜揭示了材料成分的意外细节。

2.With a transmission electron microscope, scientists can observe the internal features of cells at a very high resolution.

通过透射电子显微镜,科学家可以以非常高的分辨率观察细胞的内部特征。

3.The researchers used a transmission electron microscope to analyze the structure of the nanoparticles.

研究人员使用透射电子显微镜分析纳米颗粒的结构。

4.The transmission electron microscope is essential for studying the morphology of viruses.

对于研究病毒的形态,透射电子显微镜是必不可少的。

5.Using a transmission electron microscope, we were able to identify defects in the crystal structure.

使用透射电子显微镜,我们能够识别晶体结构中的缺陷。

作文

The field of microscopy has evolved significantly over the years, leading to the development of various techniques that allow scientists to explore the microscopic world. One of the most revolutionary advancements in this field is the transmission electron microscope, or TEM. This powerful instrument enables researchers to visualize the internal structures of materials at a resolution that far exceeds that of traditional optical microscopes.A transmission electron microscope (透射电子显微镜) works by transmitting a beam of electrons through a very thin specimen. Unlike light microscopy, which uses visible light to illuminate samples, TEM utilizes electrons, which have much shorter wavelengths. This property allows for much higher magnification and resolution, making it possible to observe the arrangement of atoms within a material. The ability to see beyond the surface and into the atomic structure opens up new avenues for research in fields such as materials science, biology, and nanotechnology.In biological applications, the transmission electron microscope (透射电子显微镜) has been instrumental in advancing our understanding of cellular structures. For instance, researchers can study organelles within cells, such as mitochondria and ribosomes, in great detail. By preparing ultra-thin sections of biological specimens, scientists can visualize these structures and gain insights into their functions and interactions. This has led to significant discoveries in cell biology and has enhanced our knowledge of diseases at the cellular level.Moreover, in materials science, the transmission electron microscope (透射电子显微镜) plays a crucial role in characterizing new materials. Engineers and scientists can analyze the microstructure of metals, polymers, and ceramics to understand their properties better. For example, by examining the grain boundaries and phase distributions within a metal alloy, researchers can optimize its mechanical properties for specific applications. This level of analysis is essential for developing advanced materials used in aerospace, electronics, and other high-tech industries.The operation of a transmission electron microscope (透射电子显微镜) requires meticulous sample preparation. Samples must be extremely thin, often less than 100 nanometers, to allow electrons to pass through. This process can involve various techniques, including ultramicrotomy and ion milling. Once prepared, the samples are placed in a vacuum chamber to prevent electron scattering by air molecules. The resulting images can then be analyzed to provide valuable information about the material's composition and structure.Despite its many advantages, the transmission electron microscope (透射电子显微镜) does have some limitations. For instance, the complexity of sample preparation can be time-consuming, and not all materials can be easily imaged using this technique. Additionally, biological specimens may require special treatments to preserve their structure during imaging. However, the benefits of using TEM far outweigh these challenges, making it an indispensable tool in modern scientific research.In conclusion, the transmission electron microscope (透射电子显微镜) has transformed the way we explore and understand the microscopic world. Its ability to provide high-resolution images of internal structures has led to groundbreaking discoveries in various fields. As technology continues to advance, we can expect further improvements in TEM capabilities, allowing scientists to delve even deeper into the intricacies of matter. The future of microscopy is undoubtedly bright, with the transmission electron microscope at the forefront of this exciting journey.

显微镜学领域近年来发生了显著的变化,导致了各种技术的发展,使科学家能够探索微观世界。其中最具革命性进展之一就是透射电子显微镜。这一强大的仪器使研究人员能够以远超传统光学显微镜的分辨率可视化材料的内部结构。透射电子显微镜transmission electron microscope)通过将电子束穿透非常薄的样本来工作。与使用可见光照明样本的光学显微镜不同,TEM利用电子,电子具有更短的波长。这一特性允许更高的放大倍数和分辨率,使得观察材料内部原子排列成为可能。能够看到表面以下的内容并深入到原子结构中,为材料科学、生物学和纳米技术等领域的研究开辟了新的途径。在生物应用中,透射电子显微镜transmission electron microscope)在推进我们对细胞结构的理解方面发挥了重要作用。例如,研究人员可以详细研究细胞内的细胞器,如线粒体和核糖体。通过制备生物样本的超薄切片,科学家可以可视化这些结构,并深入了解它们的功能和相互作用。这导致了细胞生物学中的重大发现,并增强了我们对疾病在细胞水平上知识的了解。此外,在材料科学中,透射电子显微镜transmission electron microscope)在表征新材料方面发挥着至关重要的作用。工程师和科学家可以分析金属、聚合物和陶瓷的微观结构,以更好地理解其性质。例如,通过检查金属合金中的晶界和相分布,研究人员可以优化其机械性能以适应特定应用。这种分析水平对于开发用于航空航天、电子和其他高科技行业的先进材料至关重要。透射电子显微镜transmission electron microscope)的操作需要细致的样本准备。样本必须极薄,通常小于100纳米,以允许电子通过。这个过程可能涉及各种技术,包括超微切割和离子铣削。一旦准备好,样本就会放置在真空室中,以防止空气分子的电子散射。然后,生成的图像可以被分析,以提供有关材料成分和结构的宝贵信息。尽管有许多优点,但透射电子显微镜transmission electron microscope)确实存在一些局限性。例如,样本准备的复杂性可能耗时,并非所有材料都可以轻松地使用这一技术成像。此外,生物样本可能需要特殊处理以在成像过程中保持其结构。然而,使用TEM的好处远远超过这些挑战,使其成为现代科学研究中不可或缺的工具。总之,透射电子显微镜transmission electron microscope)改变了我们探索和理解微观世界的方式。其提供高分辨率内部结构图像的能力已导致各个领域的重大突破。随着技术的不断进步,我们可以期待TEM能力的进一步提升,使科学家能够更深入地探讨物质的复杂性。显微镜学的未来无疑是光明的,透射电子显微镜将在这一激动人心的旅程中处于前沿。

相关单词

microscope

microscope详解:怎么读、什么意思、用法