periastron
简明释义
英[ˌpɛriˈæstrən]美[ˌpɛriˈæstrən]
n. [天] 近星点
复 数 p e r i a s t r a
英英释义
The point in the orbit of a celestial body where it is closest to its primary star or planet. | 天体轨道上离其主星或行星最近的点。 |
单词用法
同义词
近日点 | The spacecraft will reach its periapsis during the flyby of the planet. | 航天器将在飞掠行星时到达其近日点。 | |
近心点 | The satellite's orbit brings it closest to Earth at the pericenter. | 卫星的轨道使其在近心点时最接近地球。 |
反义词
远星 | The spacecraft reached its apastron, the point farthest from the central body. | 航天器到达了它的远星,即离中央天体最远的点。 |
例句
1.Astronomers have calculated that the periastron of the comet will occur next month, marking its closest approach to the sun, or 近日点.
天文学家计算出,这颗彗星的periastron将在下个月发生,标志着它距离太阳最近的时刻,即近日点。
2.As the planet approaches its periastron, or 近日点, it experiences increased solar radiation.
当行星接近其periastron(近日点)时,它会经历增加的太阳辐射。
3.During the periastron, or 近日点, the gravitational forces between the two stars are at their strongest.
在periastron(近日点)期间,两颗星之间的引力是最强的。
4.The binary star system's orbit brings the stars close together at their periastron, or 近日点.
这个双星系统的轨道使得两颗星在它们的periastron(近日点)时靠得很近。
5.The study of periastron distances helps astronomers understand the dynamics of binary systems, or 近日点。
对periastron距离的研究帮助天文学家理解双星系统的动态,即近日点。
作文
In the vast expanse of the universe, celestial bodies dance around one another in a gravitational embrace. Understanding these movements is crucial for astronomers and astrophysicists alike. One important concept in this field is the term periastron, which refers to the point in the orbit of a star or other celestial object where it is closest to another body, typically a star or planet. This term is derived from Greek, where 'peri' means 'near' and 'astron' means 'star'. The significance of periastron cannot be overstated, as it plays a vital role in understanding the dynamics of binary star systems and the gravitational interactions between celestial objects.To illustrate the importance of periastron, let us consider a binary star system, where two stars orbit around a common center of mass. As they revolve around each other, their distances change, leading to varying gravitational forces. When one star reaches its periastron, it experiences an increase in gravitational pull from its companion star. This moment can result in significant changes in the stars’ velocities and trajectories, affecting their future positions in space.Moreover, the study of periastron is essential for understanding phenomena such as eclipses and transits. For instance, when a star passes through the periastron phase, it may temporarily block the light from a distant background star, leading to observable dips in brightness. These events provide astronomers with valuable data to analyze the sizes, compositions, and distances of celestial objects.In addition to binary star systems, periastron also has implications for exoplanet research. When a planet orbits a star, its distance from the star varies, with the closest point being the periastron. Studying this point helps scientists determine the potential for habitability, as the distance from the star influences temperature and atmospheric conditions. Understanding the periastron of exoplanets is crucial for identifying those that may support life.Furthermore, the concept of periastron extends beyond mere distance; it encompasses the physics of orbital mechanics. The laws of Kepler's motion dictate that objects in orbit will move faster when they are closer to the body they are orbiting. This principle is exemplified at the periastron, where the gravitational force is at its peak, causing the orbiting body to accelerate. This acceleration can lead to various astrophysical phenomena, including the emission of gravitational waves during close encounters between massive objects.In conclusion, the term periastron encapsulates a fundamental aspect of celestial mechanics, providing insights into the intricate relationships between stars and other celestial bodies. Its relevance spans across multiple domains, including binary star systems, exoplanet studies, and the exploration of gravitational dynamics. As we continue to explore the cosmos, understanding terms like periastron will be instrumental in unraveling the mysteries of the universe and the forces that govern it.
在宇宙的广阔空间中,天体彼此之间在引力的拥抱中舞动。理解这些运动对于天文学家和天体物理学家来说至关重要。在这个领域中,一个重要的概念是术语periastron,它指的是恒星或其他天体轨道中离另一个天体最近的点,通常是恒星或行星。这个术语源于希腊语,其中'peri'意味着'近',而'astron'意味着'星'。periastron的重要性不容小觑,因为它在理解双星系统的动态和天体之间的引力相互作用中发挥着至关重要的作用。为了说明periastron的重要性,让我们考虑一个双星系统,在这个系统中,两颗恒星围绕着一个共同的质量中心旋转。当它们相互旋转时,它们之间的距离会发生变化,导致引力的变化。当一颗恒星达到它的periastron时,它会感受到来自伴星的引力增加。这一时刻可能导致恒星的速度和轨迹发生显著变化,影响它们在太空中的未来位置。此外,研究periastron对于理解日食和过境等现象至关重要。例如,当一颗恒星经过periastron阶段时,它可能会暂时遮挡来自遥远背景恒星的光,从而导致亮度的可观察下降。这些事件为天文学家提供了宝贵的数据,以分析天体的大小、成分和距离。除了双星系统,periastron对系外行星研究也有重要意义。当一颗行星围绕一颗恒星轨道运行时,它与恒星的距离会发生变化,最近的点就是periastron。研究这一点有助于科学家确定宜居性的潜力,因为与恒星的距离影响温度和大气条件。理解系外行星的periastron对于识别那些可能支持生命的行星至关重要。此外,periastron的概念不仅仅局限于距离;它还涵盖了轨道力学的物理学。开普勒运动定律规定,轨道上的物体在靠近其绕行的天体时会移动得更快。这个原理在periastron处得到了体现,此时引力达到顶峰,导致绕行天体加速。这种加速可能导致各种天体物理现象,包括在大质量物体之间的近距离接触时发出的引力波。总之,术语periastron概括了天体力学的一个基本方面,为我们提供了关于恒星和其他天体之间复杂关系的洞察。它的相关性跨越多个领域,包括双星系统、系外行星研究以及引力动态的探索。随着我们继续探索宇宙,理解像periastron这样的术语将对揭示宇宙及其支配力量的奥秘至关重要。