isotropic radiation
简明释义
蛤同性辐射
英英释义
例句
1.Devices like isotropic antennas are designed to measure isotropic radiation patterns.
像各向同性天线这样的设备被设计用来测量各向同性辐射模式。
2.The concept of isotropic radiation is crucial in astrophysics when studying cosmic background radiation.
在研究宇宙背景辐射时,各向同性辐射的概念在天体物理学中至关重要。
3.The sun emits isotropic radiation, which means it radiates energy uniformly in all directions.
太阳发出各向同性辐射,这意味着它在所有方向上均匀地辐射能量。
4.In a vacuum, isotropic radiation can travel without any obstruction or interference.
在真空中,各向同性辐射可以不受任何阻碍或干扰地传播。
5.When modeling the heat distribution from a point source, we often assume isotropic radiation for simplicity.
在模拟点源的热分布时,我们通常假设各向同性辐射以简化计算。
作文
In the realm of physics, particularly in the study of radiation and energy distribution, the term isotropic radiation plays a crucial role. To understand what isotropic radiation means, we must first delve into the concept of isotropy itself. Isotropy refers to the property of being uniform in all directions. When applied to radiation, it implies that the energy emitted is distributed evenly across all angles. This characteristic is essential in various fields, including astrophysics, telecommunications, and even in the design of certain types of antennas.When we talk about isotropic radiation, we often visualize a point source emitting energy uniformly in all directions, much like how a light bulb illuminates a room. The intensity of the light remains consistent regardless of the angle from which it is observed. This uniformity simplifies many calculations in physics, as it allows scientists to predict how energy will propagate through space without having to account for directional variations.In practical applications, isotropic radiation serves as a useful idealization. For instance, in the field of astrophysics, stars can often be approximated as isotropic radiators, especially when considering their radiation at vast distances. This approximation helps astronomers develop models of stellar behavior and understand the cosmic microwave background radiation, which is a remnant of the early universe.Moreover, in telecommunications, the concept of isotropic radiation is fundamental when designing antennas. An isotropic antenna is a theoretical construct that radiates power uniformly in all directions. While no physical antenna can achieve true isotropy, this model provides a baseline for comparing the performance of real-world antennas. By understanding how an isotropic radiator behaves, engineers can optimize the design of antennas to ensure better signal coverage and reception.However, it is important to note that most real-world sources of radiation are not truly isotropic. Factors such as environmental conditions, the shape of the radiating body, and the medium through which the radiation travels can all influence the distribution of energy. For example, a directional antenna emits energy more strongly in specific directions, deviating from the ideal of isotropic radiation. Understanding these deviations is crucial for engineers and scientists alike, as it allows them to refine their models and improve the efficiency of communication systems.In conclusion, the concept of isotropic radiation is a fundamental aspect of physics that aids in our understanding of how energy propagates through space. Its implications stretch across various fields, providing a framework for both theoretical studies and practical applications. By recognizing the significance of isotropy in radiation, we can better appreciate the complexities of energy distribution in our universe and apply this knowledge to innovate technologies that enhance our daily lives. As we continue to explore the frontiers of science, the principles underlying isotropic radiation will undoubtedly remain a cornerstone of our understanding of the natural world.
在物理学领域,特别是在辐射和能量分布的研究中,术语各向同性辐射起着至关重要的作用。要理解各向同性辐射的含义,我们首先必须深入了解各向同性的概念。各向同性是指在所有方向上均匀的性质。当应用于辐射时,它意味着发出的能量在所有角度上均匀分布。这一特性在天体物理学、电信,甚至某些类型天线的设计中都是必不可少的。当我们谈论各向同性辐射时,常常会想象一个点源以均匀的方式向四面八方发射能量,就像灯泡照亮房间一样。无论从哪个角度观察,光的强度保持一致。这种均匀性简化了物理学中的许多计算,因为它使科学家能够预测能量如何在空间中传播,而无需考虑方向变化。在实际应用中,各向同性辐射作为一种有用的理想化概念。例如,在天体物理学领域,星星往往可以被近似为各向同性的辐射体,特别是在考虑其辐射在遥远距离时。这种近似帮助天文学家开发恒星行为模型,并理解宇宙微波背景辐射,这是早期宇宙的遗迹。此外,在电信领域,各向同性辐射的概念在设计天线时是基础。当提到各向同性天线时,它是一种理论构造,能够在所有方向均匀地辐射功率。尽管没有物理天线能够实现真正的各向同性,但这一模型为比较现实世界天线的性能提供了基准。通过理解各向同性辐射器的行为,工程师可以优化天线的设计,以确保更好的信号覆盖和接收。然而,值得注意的是,大多数现实世界的辐射源并非真正的各向同性。环境条件、辐射体的形状以及辐射传播的介质等因素都可能影响能量的分布。例如,定向天线在特定方向上更强烈地发射能量,偏离了各向同性辐射的理想。理解这些偏差对于工程师和科学家来说至关重要,因为这使他们能够改进模型,提高通信系统的效率。总之,各向同性辐射的概念是物理学的一个基本方面,有助于我们理解能量如何在空间中传播。其影响跨越多个领域,为理论研究和实际应用提供了框架。通过认识到各向同性在辐射中的重要性,我们可以更好地欣赏能量分布在宇宙中的复杂性,并将这些知识应用于创新技术,以增强我们的日常生活。随着我们继续探索科学的前沿,支撑各向同性辐射的原则无疑将继续成为我们理解自然世界的基石。
相关单词