ionized donor
简明释义
电离施主
英英释义
例句
1.The presence of an ionized donor in the semiconductor can significantly increase its conductivity.
半导体中存在一个离子化施主可以显著提高其导电性。
2.Researchers are looking into how ionized donors can be used to enhance solar cell efficiency.
研究人员正在研究如何利用离子化施主来提高太阳能电池的效率。
3.The ionized donor introduced into the solution improved the reaction rate significantly.
引入溶液中的离子化施主显著提高了反应速率。
4.The ionized donor played a crucial role in the formation of conductive pathways in the material.
在材料中,离子化施主在导电通路的形成中起到了关键作用。
5.In our experiment, we measured the effects of temperature on the behavior of ionized donors in a crystal lattice.
在我们的实验中,我们测量了温度对晶体格子中离子化施主行为的影响。
作文
In the field of chemistry and physics, the concept of an ionized donor refers to a species that can donate electrons to another atom or molecule after it has lost one or more electrons, resulting in a positive charge. This process is crucial in various chemical reactions, particularly in ionic bonding and semiconductor physics. For instance, when sodium (Na) loses an electron, it becomes a positively charged ion, or cation, which can then act as an ionized donor. This ability to donate electrons is fundamental for understanding how atoms interact and form compounds. The importance of ionized donors extends beyond basic chemistry; they play a significant role in biological systems as well. In cellular respiration, for example, the transfer of electrons is essential for energy production. Here, certain molecules act as ionized donors, facilitating the flow of electrons through metabolic pathways. This electron transfer is vital for the synthesis of adenosine triphosphate (ATP), the energy currency of the cell. Without ionized donors, life as we know it would not exist, highlighting their critical function in sustaining biological processes.Moreover, the study of ionized donors is pivotal in the development of new materials, particularly in the field of electronics. Semiconductors, which are foundational to modern technology, rely heavily on the presence of ionized donors to control electrical conductivity. By introducing specific impurities into a pure semiconductor material, scientists can create n-type semiconductors that have an abundance of free electrons. These free electrons arise from the ionized donors, thus enhancing the material's ability to conduct electricity. This principle underlies the operation of various electronic devices, including transistors and diodes, which are essential components in computers and smartphones.Furthermore, the role of ionized donors is also explored in environmental science. Understanding how certain ions behave in natural waters can help in assessing water quality and the health of ecosystems. For instance, ionized donors can influence the solubility of heavy metals, which can be toxic to aquatic life. By studying these interactions, researchers can develop strategies to mitigate pollution and protect environmental health.In conclusion, the concept of an ionized donor is integral to many scientific disciplines, from chemistry and biology to materials science and environmental studies. The ability of certain species to donate electrons not only facilitates countless chemical reactions but also underpins the functionality of modern technology and contributes to our understanding of ecological dynamics. As research continues to evolve, the significance of ionized donors will undoubtedly expand, revealing even more applications and insights into the natural world. Understanding this term is essential for anyone studying the sciences, as it encapsulates a fundamental aspect of how matter interacts and transforms in various contexts.
在化学和物理学领域,离子化供体的概念是指一种可以在失去一个或多个电子后,将电子捐赠给另一个原子或分子的物种,从而导致正电荷的形成。这个过程在各种化学反应中至关重要,特别是在离子键合和半导体物理中。例如,当钠(Na)失去一个电子时,它变成了一个带正电的离子,即阳离子,这样它就可以作为一个离子化供体。这种捐赠电子的能力是理解原子如何相互作用并形成化合物的基础。离子化供体的重要性不仅限于基础化学;它们在生物系统中也发挥着重要作用。例如,在细胞呼吸中,电子的转移对能量生产至关重要。在这里,某些分子作为离子化供体,促进电子在代谢途径中的流动。这种电子转移对于合成三磷酸腺苷(ATP),细胞的能量货币,是至关重要的。如果没有离子化供体,我们所知的生命将无法存在,突显了它们在维持生物过程中的关键功能。此外,离子化供体的研究在新材料开发中也至关重要,尤其是在电子学领域。半导体是现代技术的基础,依赖于离子化供体的存在来控制电导率。通过向纯半导体材料中引入特定杂质,科学家可以创建富含自由电子的n型半导体。这些自由电子源于离子化供体,从而增强了材料的电导能力。这一原理支撑了各种电子设备的运行,包括晶体管和二极管,这些都是计算机和智能手机的基本组件。此外,离子化供体的角色在环境科学中也得到了探讨。了解某些离子在自然水体中的行为有助于评估水质和生态系统的健康。例如,离子化供体可以影响重金属的溶解度,而重金属对水生生物可能是有毒的。通过研究这些相互作用,研究人员可以制定减轻污染和保护环境健康的策略。总之,离子化供体的概念在许多科学学科中都是不可或缺的,从化学和生物学到材料科学和环境研究。某些物种捐赠电子的能力不仅促进了无数化学反应,而且支撑了现代技术的功能,并有助于我们理解生态动态。随着研究的不断发展,离子化供体的重要性无疑会扩大,揭示出更多的应用和对自然世界的洞察。理解这个术语对于任何学习科学的人来说都是必不可少的,因为它概括了物质在各种情境中相互作用和转化的基本方面。
相关单词