avalanche ionization
简明释义
雪崩电离
英英释义
例句
1.The principle of avalanche ionization 雪崩电离 is crucial for the functioning of Geiger-Müller counters.
对于盖革-穆勒计数器的工作原理来说,avalanche ionization 雪崩电离的原理至关重要。
2.In high-energy physics experiments, researchers often observe the effects of avalanche ionization 雪崩电离 in particle detectors.
在高能物理实验中,研究人员经常观察到粒子探测器中avalanche ionization 雪崩电离的效果。
3.In semiconductor devices, avalanche ionization 雪崩电离 can lead to breakdown voltages being reached.
在半导体器件中,avalanche ionization 雪崩电离可能导致击穿电压的达到。
4.When a gas is ionized by an electric field, it can lead to avalanche ionization 雪崩电离 and create a conductive path.
当气体被电场电离时,可能会导致avalanche ionization 雪崩电离并形成导电路径。
5.The detection of radiation often relies on the process of avalanche ionization 雪崩电离 to amplify signals.
辐射的检测通常依赖于avalanche ionization 雪崩电离过程来放大信号。
作文
Avalanche ionization is a crucial phenomenon in the field of physics and electrical engineering, particularly in the study of semiconductors and gas discharge processes. This process occurs when an electron gains enough energy to ionize an atom or a molecule, leading to a chain reaction where more electrons are released, resulting in a significant multiplication of charge carriers. The term 'avalanche' refers to the rapid and cascading nature of this ionization process, similar to how an avalanche of snow can quickly accumulate and grow larger as it descends a mountain. Understanding avalanche ionization (雪崩电离) is essential for various applications, including the design of photomultiplier tubes, avalanche photodiodes, and other devices that rely on the amplification of electrical signals.The mechanism of avalanche ionization (雪崩电离) begins with a free electron being accelerated by an electric field. As this electron moves through a material, it can collide with other atoms or molecules, imparting enough energy to eject additional electrons from them. These newly freed electrons are then also accelerated by the electric field, leading to further collisions and the release of even more electrons. This self-sustaining process can result in a rapid increase in the number of charge carriers, hence the term 'avalanche.'In semiconductor physics, avalanche ionization (雪崩电离) plays a vital role in the operation of certain types of diodes and transistors. For instance, avalanche photodiodes exploit this phenomenon to detect light. When a photon strikes the diode, it can generate an electron-hole pair. If the device is reverse-biased, the electric field can accelerate the electrons, causing them to undergo avalanche ionization (雪崩电离) and produce a measurable current that corresponds to the intensity of the incoming light. This makes avalanche photodiodes highly sensitive and useful in applications such as fiber-optic communication and medical imaging.Moreover, avalanche ionization (雪崩电离) is also significant in gas discharge tubes, which are used in various lighting applications and surge protection devices. In these tubes, a high voltage can initiate a discharge process where the gas becomes ionized. Once ionization starts, it can lead to a rapid increase in the number of charged particles, allowing current to flow through the tube. This principle underlies the operation of neon lights and other gas-discharge lamps, where the glowing effect is a direct result of ionized gas.The study of avalanche ionization (雪崩电离) is not only limited to practical applications; it also has profound implications in fundamental physics. Researchers investigate the conditions under which avalanche ionization occurs, the characteristics of the resulting ionization waves, and the impact of various materials on the efficiency of this process. Such studies contribute to a deeper understanding of plasma physics and the behavior of charged particles in different environments.In summary, avalanche ionization (雪崩电离) is a fascinating and complex process that has significant implications in both theoretical and applied physics. Its ability to amplify electrical signals makes it invaluable in modern technology, while its underlying principles continue to be a subject of research and exploration. By studying this phenomenon, scientists and engineers can develop new devices and improve existing technologies, ultimately enhancing our understanding of the physical world around us.
雪崩电离是物理学和电气工程领域中的一个重要现象,特别是在半导体和气体放电过程的研究中。这个过程发生在当一个电子获得足够的能量去电离一个原子或分子时,导致链式反应的发生,从而释放出更多的电子,最终导致电荷载流子的显著增殖。“雪崩”一词指的是这种电离过程的快速和级联性质,类似于雪崩在山上迅速积累并变得更大的方式。理解雪崩电离(avalanche ionization)对于各种应用至关重要,包括光电倍增管、雪崩光电二极管和其他依赖于电信号放大的设备的设计。雪崩电离(avalanche ionization)的机制始于一个自由电子被电场加速。当这个电子在材料中移动时,它可以与其他原子或分子发生碰撞,传递足够的能量以将额外的电子弹出。这些新释放的电子也会被电场加速,导致进一步的碰撞和释放更多的电子。这个自我维持的过程可以导致电荷载流子数量的迅速增加,因此称为“雪崩”。在半导体物理中,雪崩电离(avalanche ionization)在某些类型的二极管和晶体管的操作中扮演着至关重要的角色。例如,雪崩光电二极管利用这一现象来检测光。当光子撞击二极管时,它可以生成一个电子-空穴对。如果设备是反向偏置的,电场可以加速电子,使其经历雪崩电离(avalanche ionization)并产生与入射光强度相对应的可测电流。这使得雪崩光电二极管具有高度灵敏性,并在光纤通信和医学成像等应用中非常有用。此外,雪崩电离(avalanche ionization)在气体放电管中也很重要,这些管用于各种照明应用和浪涌保护设备。在这些管中,高电压可以启动放电过程,使气体电离。一旦电离开始,就会导致带电粒子数量的迅速增加,从而允许电流通过管道流动。这一原理是霓虹灯和其他气体放电灯的工作基础,其中发光效果直接源于电离气体。对雪崩电离(avalanche ionization)的研究不仅限于实际应用;它在基础物理学中也有深远的影响。研究人员调查雪崩电离(avalanche ionization雪崩电离(avalanche ionization)是一个迷人且复杂的过程,在理论和应用物理中都有重要意义。它放大电信号的能力使其在现代技术中不可或缺,而其基本原理仍然是研究和探索的主题。通过研究这一现象,科学家和工程师可以开发新设备并改进现有技术,最终增强我们对周围物理世界的理解。
相关单词