avalanche breakdown
简明释义
雪崩哗
英英释义
例句
1.Engineers worked overnight to resolve the avalanche breakdown 雪崩式故障 that paralyzed the network.
工程师们通宵达旦地解决了使网络瘫痪的avalanche breakdown 雪崩式故障。
2.During the intense storm, the electrical system suffered an avalanche breakdown 雪崩式故障, causing widespread outages.
在强烈的暴风雨中,电力系统遭遇了avalanche breakdown 雪崩式故障,导致大范围停电。
3.The software experienced an avalanche breakdown 雪崩式故障 when too many users tried to log in at once.
当太多用户同时尝试登录时,软件发生了avalanche breakdown 雪崩式故障。
4.After the new policy was implemented, the system faced an avalanche breakdown 雪崩式故障 due to overwhelming requests.
新政策实施后,系统由于请求过多而面临avalanche breakdown 雪崩式故障。
5.The sudden influx of data caused an avalanche breakdown 雪崩式故障 in the database management system.
数据的突然涌入导致数据库管理系统发生了avalanche breakdown 雪崩式故障。
作文
In the world of physics and engineering, the term avalanche breakdown refers to a phenomenon that occurs in semiconductors and insulators when a high electric field causes a rapid increase in current. This process is similar to an avalanche in nature, where a small disturbance can lead to a massive release of energy and material. Understanding avalanche breakdown is crucial for designing electronic devices that operate efficiently and safely.When a semiconductor device, such as a diode or transistor, is subjected to a voltage that exceeds its breakdown voltage, it can enter a state of avalanche breakdown. In this state, the electric field becomes so strong that it ionizes the atoms in the semiconductor, creating free charge carriers. These carriers can then collide with other atoms, causing further ionization and a chain reaction that leads to a significant increase in current flow. This effect can be both beneficial and detrimental, depending on the context in which it occurs.In some applications, avalanche breakdown is intentionally utilized. For example, avalanche photodiodes exploit this effect to detect light with high sensitivity. When photons hit the semiconductor, they can generate electron-hole pairs, which, under the influence of a strong electric field, can trigger the avalanche breakdown. This results in a large output current that can be measured, making these devices invaluable in optical communication systems and other technologies.However, in most cases, avalanche breakdown is an undesirable event. For instance, in power electronics, if a component experiences avalanche breakdown, it can lead to catastrophic failure. The excessive current can cause overheating, physical damage to the device, and even create safety hazards. Therefore, engineers must carefully design circuits to avoid conditions that could lead to avalanche breakdown. This includes implementing protective measures such as clamping diodes and ensuring that components operate within their specified voltage limits.The study of avalanche breakdown also has implications beyond traditional electronics. In the field of nanotechnology, researchers are exploring how nanoscale materials behave under high electric fields. They have discovered that certain nanostructures can exhibit unique properties related to avalanche breakdown, potentially leading to innovative applications in sensors and energy harvesting devices.In summary, avalanche breakdown is a critical concept in both theoretical and applied physics. It illustrates how small changes in conditions can lead to significant effects, much like how a tiny snowflake can trigger a massive avalanche. By understanding and harnessing this phenomenon, scientists and engineers can develop more efficient electronic devices and explore new frontiers in technology. As we continue to push the boundaries of what is possible in electronics and materials science, the knowledge of avalanche breakdown will undoubtedly play a vital role in shaping the future of innovation.
在物理和工程学的领域中,术语雪崩击穿指的是一种现象,当高电场导致电流迅速增加时,它发生在半导体和绝缘体中。这个过程类似于自然界中的雪崩,其中一个小的扰动可以引发大量能量和物质的释放。理解雪崩击穿对于设计高效且安全的电子设备至关重要。当半导体设备(如二极管或晶体管)受到超过其击穿电压的电压时,它可能进入雪崩击穿状态。在这种状态下,电场变得非常强,以至于它使半导体中的原子电离,产生自由电荷载体。这些载体随后可以与其他原子碰撞,导致进一步的电离和链式反应,导致电流大幅增加。根据发生的上下文,这种效应可能是有益的,也可能是有害的。在某些应用中,雪崩击穿是故意利用的。例如,雪崩光电二极管利用这一效应来高灵敏度地探测光。当光子击中半导体时,它们可以生成电子-空穴对,在强电场的影响下,这些载体可以触发雪崩击穿。这会导致一个可以测量的大输出电流,使这些设备在光通信系统和其他技术中不可或缺。然而,在大多数情况下,雪崩击穿是一个不希望出现的事件。例如,在电力电子学中,如果一个组件经历了雪崩击穿,可能会导致灾难性的故障。过量的电流可能导致过热、设备的物理损坏,甚至造成安全隐患。因此,工程师必须仔细设计电路,以避免可能导致雪崩击穿的条件。这包括实施保护措施,如钳位二极管,并确保组件在其规定的电压限制内运行。对雪崩击穿的研究也超出了传统电子学的范围。在纳米技术领域,研究人员正在探索纳米尺度材料在高电场下的行为。他们发现某些纳米结构可以表现出与雪崩击穿相关的独特性质,可能导致传感器和能量收集设备中的创新应用。总之,雪崩击穿是理论和应用物理中的一个关键概念。它说明了条件的小变化如何导致显著的效果,就像一片微小的雪花可以触发一场巨大的雪崩。通过理解和利用这一现象,科学家和工程师可以开发出更高效的电子设备,并探索技术的新前沿。随着我们继续推动电子学和材料科学的可能性,了解雪崩击穿无疑将在塑造未来创新方面发挥重要作用。
相关单词