amorphous crystalline transition

简明释义

非晶态晶态转变

英英释义

Amorphous crystalline transition refers to the process in which a material changes from an amorphous (non-crystalline) state to a crystalline state, characterized by a well-ordered arrangement of atoms or molecules.

无定形晶体转变是指材料从无定形(非晶态)状态转变为晶态的过程,其特征是原子或分子的有序排列。

例句

1.The study of the amorphous crystalline transition 无定形晶体转变 is crucial in understanding the properties of glassy materials.

无定形晶体转变的研究对于理解玻璃材料的特性至关重要。

2.The amorphous crystalline transition 无定形晶体转变 plays a vital role in the formation of nanostructured materials.

在纳米结构材料的形成中,无定形晶体转变起着重要作用。

3.Understanding the amorphous crystalline transition 无定形晶体转变 helps improve the thermal stability of certain materials.

理解无定形晶体转变有助于提高某些材料的热稳定性。

4.Researchers observed an amorphous crystalline transition 无定形晶体转变 during the cooling process of the molten metal.

研究人员在熔融金属的冷却过程中观察到了无定形晶体转变

5.The amorphous crystalline transition 无定形晶体转变 can significantly affect the mechanical strength of polymers.

无定形晶体转变可以显著影响聚合物的机械强度。

作文

The study of materials often leads us to fascinating phenomena that occur at the microscopic level. One such phenomenon is the amorphous crystalline transition, which describes the transformation between amorphous and crystalline states of a material. This transition is crucial in various fields, including materials science, chemistry, and even biology. Understanding this process can help us develop better materials with desired properties, such as improved strength, flexibility, or thermal stability.To begin with, it is essential to define what we mean by 'amorphous' and 'crystalline.' Amorphous materials lack a long-range order in their atomic arrangement, meaning that their atoms are arranged randomly. On the other hand, crystalline materials possess a highly ordered structure, where atoms are arranged in a repeating pattern. The amorphous crystalline transition refers to the process where a material changes from an amorphous state to a crystalline one, or vice versa.This transition can be induced by several factors, including temperature, pressure, and the rate of cooling. For instance, when a molten glass cools rapidly, it may solidify into an amorphous state. However, if the cooling process is slow, the atoms have more time to arrange themselves into a crystalline structure. This difference in cooling rates highlights the significance of kinetic factors in determining the final state of a material.In practical applications, the amorphous crystalline transition plays a vital role in industries such as electronics, pharmaceuticals, and nanotechnology. In electronics, for example, the transition can affect the performance of semiconductors. Amorphous silicon is commonly used in thin-film solar cells due to its ability to absorb light effectively, while crystalline silicon is preferred for its superior electrical conductivity. Understanding the conditions that favor one state over the other can lead to innovations in solar technology.Similarly, in the pharmaceutical industry, the solubility and bioavailability of drugs can be influenced by their crystalline or amorphous forms. Many drugs are more soluble in their amorphous state, which can enhance their effectiveness. Therefore, controlling the amorphous crystalline transition during the manufacturing process is critical for developing high-quality medications.Moreover, research into the amorphous crystalline transition has implications for understanding natural processes as well. For example, the formation of ice in biological systems can be viewed through this lens. Ice crystals can form in living organisms under certain conditions, which can lead to cell damage. By studying how these transitions occur, scientists may find ways to preserve biological samples or improve cryopreservation techniques.In conclusion, the amorphous crystalline transition is a significant concept in material science that encompasses various applications and implications. By exploring the factors that influence this transition, researchers can unlock new possibilities for material design and application. Whether in developing advanced electronic devices, creating effective pharmaceuticals, or understanding natural phenomena, mastering the principles behind the amorphous crystalline transition is essential for innovation in science and technology.

材料的研究常常引领我们发现微观层面上发生的迷人现象。其中一个现象是无定形晶体转变,它描述了材料在无定形状态和晶体状态之间的转变。这一转变在材料科学、化学甚至生物学等多个领域中至关重要。理解这个过程可以帮助我们开发出具有所需特性的更好材料,例如提高强度、灵活性或热稳定性。首先,有必要定义“无定形”和“晶体”所指的含义。无定形材料在原子排列上缺乏长程有序性,这意味着它们的原子是随机排列的。另一方面,晶体材料具有高度有序的结构,原子以重复的模式排列。无定形晶体转变指的是材料从无定形状态转变为晶体状态,或反之亦然的过程。这种转变可以由多种因素引起,包括温度、压力和冷却速率。例如,当熔融玻璃快速冷却时,它可能固化为无定形状态。然而,如果冷却过程缓慢,原子就有更多时间排列成晶体结构。这种冷却速率的差异突显了动力学因素在决定材料最终状态中的重要性。在实际应用中,无定形晶体转变在电子、制药和纳米技术等行业中发挥着重要作用。例如,在电子领域,这种转变可能影响半导体的性能。无定形硅因其有效吸收光线而广泛用于薄膜太阳能电池,而晶体硅则因其优越的电导率而更受青睐。了解有利于一种状态而非另一种状态的条件,可以推动太阳能技术的创新。同样,在制药行业,药物的溶解度和生物利用度也会受到其晶体或无定形形式的影响。许多药物在无定形状态下更易溶解,这可以增强其有效性。因此,在制造过程中控制无定形晶体转变对于开发高质量药物至关重要。此外,研究无定形晶体转变还对理解自然过程有重要意义。例如,生物系统中冰的形成可以通过这一角度来观察。在某些条件下,冰晶可以在生物体内形成,这可能导致细胞损伤。通过研究这些转变如何发生,科学家可能会找到保存生物样本或改善冷冻保存技术的方法。总之,无定形晶体转变是材料科学中一个重要的概念,涵盖了各种应用和影响。通过探索影响这一转变的因素,研究人员可以为材料设计和应用开辟新的可能性。无论是在开发先进的电子设备、创造有效的药物,还是理解自然现象,掌握无定形晶体转变背后的原理对于科学和技术的创新都是至关重要的。

相关单词

amorphous

amorphous详解:怎么读、什么意思、用法

crystalline

crystalline详解:怎么读、什么意思、用法