acoustical holography

简明释义

声全息术

英英释义

Acoustical holography is a technique that uses sound waves to create a three-dimensional representation of an object or environment, allowing for detailed analysis of its acoustic properties.

声学全息术是一种利用声波创建物体或环境的三维表示的技术,允许对其声学特性进行详细分析。

例句

1.In architectural acoustics, acoustical holography 声学全息术 is used to design spaces with optimal sound quality.

在建筑声学中,声学全息术 acoustical holography 被用来设计具有最佳音质的空间。

2.Using acoustical holography 声学全息术, engineers can analyze the performance of speakers in a sound studio.

通过使用声学全息术 acoustical holography,工程师可以分析音响工作室中扬声器的性能。

3.The study of acoustical holography 声学全息术 helps in understanding how sound waves interact with different materials.

声学全息术 acoustical holography 的研究有助于理解声波如何与不同材料相互作用。

4.Researchers are using acoustical holography 声学全息术 to visualize sound fields in complex environments.

研究人员正在使用声学全息术 acoustical holography 来可视化复杂环境中的声场。

5.The application of acoustical holography 声学全息术 in medical imaging has shown promising results.

在医学成像中应用声学全息术 acoustical holography 已显示出良好的结果。

作文

In recent years, advancements in technology have opened up new avenues for research and applications in various fields. One such innovative approach is acoustical holography, which has garnered attention for its potential to revolutionize imaging techniques. Acoustical holography refers to the process of creating a three-dimensional image using sound waves, allowing researchers and engineers to visualize objects and structures without direct contact.The principle behind acoustical holography is based on the interaction of sound waves with objects. When sound waves are emitted, they travel through the medium and interact with the surfaces of the objects. These interactions create patterns of sound pressure that can be captured and analyzed. By processing this data, it is possible to reconstruct a three-dimensional image of the object, similar to how optical holography uses light waves.One of the significant advantages of acoustical holography is its non-destructive nature. Unlike traditional imaging techniques, which may require physical contact or invasive procedures, acoustical holography allows for the examination of delicate or sensitive materials without causing damage. This makes it particularly valuable in fields such as medicine, where imaging internal organs or tissues can be critical for diagnosis and treatment planning.Moreover, acoustical holography has applications beyond the medical field. In engineering and materials science, it can be used to detect flaws or irregularities in structures, ensuring safety and reliability in construction and manufacturing. For instance, by employing acoustical holography in the inspection of bridges or aircraft components, engineers can identify potential weaknesses before they lead to catastrophic failures.The versatility of acoustical holography extends to various industries, including aerospace, automotive, and even art conservation. In the aerospace industry, it can help monitor the integrity of aircraft during flight tests, while in art conservation, it can aid in the analysis of artworks without altering their condition.Despite its numerous benefits, acoustical holography is not without challenges. The technology requires sophisticated equipment and expertise in signal processing to accurately interpret the data collected. Additionally, environmental factors, such as temperature and humidity, can affect sound wave propagation, potentially complicating the imaging process.In conclusion, acoustical holography represents a significant advancement in imaging technology, offering a non-invasive and versatile method for visualizing objects in three dimensions. Its applications span across various fields, from medicine to engineering, showcasing its potential to enhance our understanding and analysis of complex systems. As research continues and technology evolves, acoustical holography may become an integral tool in our quest for knowledge and innovation, paving the way for future discoveries and advancements.

近年来,技术的进步为各个领域的研究和应用开辟了新的途径。其中一种创新的方法是声全息,因其潜力而受到关注,有望彻底改变成像技术。声全息是指利用声波创建三维图像的过程,使研究人员和工程师能够在不直接接触的情况下可视化物体和结构。声全息的原理基于声波与物体之间的相互作用。当声波发出时,它们通过介质传播并与物体的表面相互作用。这些相互作用产生声压模式,可以被捕捉和分析。通过处理这些数据,可以重建物体的三维图像,类似于光学全息术使用光波的方式。声全息的一个显著优势是其无损特性。与传统成像技术不同,后者可能需要物理接触或侵入性程序,声全息允许在不造成损害的情况下检查精细或敏感的材料。这使其在医学等领域尤为重要,因为成像内部器官或组织对诊断和治疗计划至关重要。此外,声全息还可以应用于医疗领域以外。在工程和材料科学中,它可以用来检测结构中的缺陷或不规则性,确保建筑和制造的安全性和可靠性。例如,通过在桥梁或飞机部件的检查中采用声全息,工程师可以在潜在的弱点导致灾难性故障之前识别出来。声全息的多功能性扩展到多个行业,包括航空航天、汽车甚至艺术保护。在航空航天行业,它可以帮助在飞行测试期间监测飞机的完整性,而在艺术保护中,它可以在不改变作品状态的情况下帮助分析艺术品。尽管有许多好处,声全息仍然面临挑战。这项技术需要复杂的设备和信号处理方面的专业知识,以准确解释所收集的数据。此外,温度和湿度等环境因素会影响声波传播,可能会使成像过程变得复杂。总之,声全息代表了一项重要的成像技术进步,提供了一种无创且多功能的方法来三维可视化物体。它的应用跨越各个领域,从医学到工程,展示了其增强我们对复杂系统理解和分析的潜力。随着研究的持续和技术的发展,声全息可能成为我们追求知识和创新的一个重要工具,为未来的发现和进步铺平道路。

相关单词

acoustical

acoustical详解:怎么读、什么意思、用法

holography

holography详解:怎么读、什么意思、用法