acceptor atom

简明释义

受汁子

英英释义

An acceptor atom is an atom that can accept electrons during a chemical reaction or in a semiconductor context, facilitating the formation of bonds or contributing to electrical conductivity.

受体原子是指在化学反应或半导体环境中能够接受电子的原子,从而促进键的形成或增强电导性。

例句

1.In organic chemistry, an acceptor atom 受体原子 can participate in electron transfer reactions.

在有机化学中,受体原子可以参与电子转移反应。

2.The efficiency of solar cells can be improved by optimizing the concentration of acceptor atoms 受体原子 in the semiconductor layer.

通过优化半导体层中受体原子的浓度,可以提高太阳能电池的效率。

3.The behavior of a crystal structure can change when acceptor atoms 受体原子 are introduced into the lattice.

受体原子被引入晶格时,晶体结构的行为可能会发生变化。

4.In semiconductor physics, the presence of a acceptor atom 受体原子 can significantly influence the electrical properties of the material.

在半导体物理中,受体原子的存在可以显著影响材料的电气特性。

5.Doping silicon with boron introduces acceptor atoms 受体原子 that create holes for charge carriers.

用硼掺杂硅会引入受体原子,为电荷载体创造空穴。

作文

In the field of chemistry and materials science, the concept of an acceptor atom is crucial for understanding various reactions and properties of materials. An acceptor atom refers to an atom that can accept electrons during a chemical reaction. This process is fundamental in many areas, including semiconductor physics, catalysis, and even biological systems where electron transfer plays a significant role.To illustrate the importance of acceptor atoms, let’s consider their role in semiconductors. Semiconductors are materials that have electrical conductivity between that of a conductor and an insulator. The behavior of semiconductors is heavily influenced by the presence of acceptor atoms. When a semiconductor material, such as silicon, is doped with acceptor atoms, it creates 'holes' in the crystal lattice structure. These holes act as positive charge carriers, allowing the flow of electricity through the material. This principle is essential for the operation of various electronic devices, including diodes and transistors.Moreover, acceptor atoms are also critical in catalytic processes. Catalysts often work by providing a surface where reactants can come together, and the presence of acceptor atoms can facilitate the transfer of electrons, thereby speeding up the reaction. For instance, in the Haber process, which synthesizes ammonia from nitrogen and hydrogen, certain metals serve as acceptor atoms that help in the electron transfer, enhancing the efficiency of the process.In biological systems, acceptor atoms play a vital role in cellular respiration and photosynthesis. In these processes, electrons are transferred between molecules, and acceptor atoms are essential for the proper functioning of enzymes and other proteins that facilitate these reactions. For example, in the electron transport chain of mitochondria, oxygen acts as the final acceptor atom, allowing cells to produce energy efficiently.Understanding the behavior of acceptor atoms helps scientists design better materials and improve existing technologies. Researchers are constantly exploring new ways to manipulate acceptor atoms to enhance the performance of electronic devices or develop more efficient catalysts. For instance, the development of new semiconductor materials that incorporate different acceptor atoms can lead to faster and more efficient electronic components.In conclusion, the concept of an acceptor atom is fundamental across various scientific disciplines. Its ability to accept electrons makes it a key player in chemical reactions, semiconductor technology, catalysis, and biological processes. As research continues to advance in these areas, the understanding and application of acceptor atoms will undoubtedly lead to significant technological advancements and innovations in the future.

在化学和材料科学领域,受体原子的概念对于理解各种反应和材料的特性至关重要。受体原子指的是在化学反应中能够接受电子的原子。这一过程在许多领域中都是基础,包括半导体物理、催化以及甚至在生物系统中,电子转移发挥着重要作用。为了说明受体原子的重要性,让我们考虑它们在半导体中的作用。半导体是导电性介于导体和绝缘体之间的材料。半导体的行为受到受体原子存在的严重影响。当像硅这样的半导体材料被掺杂了受体原子时,它在晶格结构中产生了“空穴”。这些空穴作为正电荷载流子,允许电流通过材料流动。这一原理对于各种电子设备的运行至关重要,包括二极管和晶体管。此外,受体原子在催化过程中也至关重要。催化剂通常通过提供一个表面,使反应物能够结合,而受体原子的存在可以促进电子的转移,从而加速反应。例如,在合成氨的哈伯过程(Haber process)中,某些金属作为受体原子,帮助进行电子转移,提高了过程的效率。在生物系统中,受体原子在细胞呼吸和光合作用中发挥着重要作用。在这些过程中,分子之间会发生电子转移,而受体原子对于酶和其他促进这些反应的蛋白质的正常功能至关重要。例如,在线粒体的电子传递链中,氧气作为最终的受体原子,使细胞能够高效地产生能量。理解受体原子的行为有助于科学家设计更好的材料并改进现有技术。研究人员不断探索操控受体原子的新方法,以提高电子设备的性能或开发更高效的催化剂。例如,开发新型半导体材料,掺入不同的受体原子,可以导致更快和更高效的电子元件。总之,受体原子的概念在各个科学学科中都是基础。它接受电子的能力使其成为化学反应、半导体技术、催化和生物过程中的关键角色。随着这些领域研究的不断推进,对受体原子的理解和应用无疑将导致未来显著的技术进步和创新。

相关单词

acceptor

acceptor详解:怎么读、什么意思、用法