angular displacement

简明释义

角位移

英英释义

Angular displacement is the angle in radians through which a point or line has been rotated in a specified sense about a specified axis.

角位移是指一个点或一条线围绕指定轴以指定方向旋转的弧度角。

例句

1.In physics, we often calculate the angular displacement 角位移 when analyzing rotational motion.

在物理学中,我们在分析旋转运动时常常计算 角位移 angular displacement

2.The pendulum swings back and forth, and its angular displacement 角位移 determines the angle it makes with the vertical.

摆锤前后摆动,它的 角位移 angular displacement 决定了它与垂直线的角度。

3.In robotics, the angular displacement 角位移 of joints is essential for precise movement control.

在机器人技术中,关节的 角位移 angular displacement 对于精确的运动控制至关重要。

4.When a car turns, the angular displacement 角位移 of the steering wheel is crucial for understanding the vehicle's path.

当汽车转弯时,方向盘的 角位移 angular displacement 对于理解车辆的行驶路径至关重要。

5.The wheel of the bicycle rotates, and the angular displacement 角位移 can be measured in radians.

自行车的轮子旋转,角位移 angular displacement 可以用弧度来测量。

作文

In the realm of physics, understanding motion is crucial, and one of the fundamental concepts that aid in this understanding is angular displacement. This term refers to the change in the angle of an object as it moves along a circular path. It is measured in radians, degrees, or revolutions, and it represents the angle through which an object has rotated about a fixed point or axis. This concept is particularly important in various fields such as engineering, robotics, and even in everyday applications like driving a car or playing sports.To better grasp the idea of angular displacement, consider a simple example of a Ferris wheel. As the wheel rotates, each seat on the wheel travels along a circular path. If we focus on one particular seat, we can observe how it moves from one position to another. The angle formed between its initial position and its final position, relative to the center of the wheel, is what we refer to as angular displacement. The significance of angular displacement lies in its ability to provide a clear understanding of rotational motion. Unlike linear displacement, which only considers the distance traveled in a straight line, angular displacement takes into account the rotational aspect of motion. This is essential in scenarios where objects move in circles or arcs, such as planets orbiting the sun or wheels turning on a vehicle.Moreover, angular displacement can be positive or negative, depending on the direction of rotation. For instance, if an object rotates counterclockwise, the angular displacement is considered positive, while a clockwise rotation yields a negative angular displacement. This directional component is vital for accurately describing the motion of rotating bodies.In practical applications, engineers often utilize angular displacement when designing mechanisms that involve rotation, such as gears, motors, and linkages. By calculating the angular displacement, they can determine how far a part will rotate and how it will interact with other components within a system. This calculation ensures that machines operate efficiently and effectively, minimizing errors and maximizing performance.Furthermore, in the field of robotics, understanding angular displacement is essential for programming robotic arms and other automated systems. Robots often need to perform precise movements, and knowing the exact angular displacement allows engineers to program these movements accurately. This precision is particularly crucial in tasks such as assembly lines, surgical robots, and even in autonomous vehicles, where any deviation from the intended path could lead to failures or accidents.In conclusion, angular displacement is a vital concept in the study of motion, especially in rotational dynamics. It provides a framework for understanding how objects move in circular paths and enables engineers and scientists to analyze and predict the behavior of rotating systems. Whether in the design of machinery, the programming of robots, or the analysis of celestial bodies, the concept of angular displacement plays a critical role in our understanding of the physical world. By mastering this concept, we can enhance our ability to innovate and solve complex problems across various fields. Overall, the study of angular displacement not only enriches our knowledge of physics but also empowers us to apply this knowledge in practical ways, leading to advancements in technology and improvements in our daily lives.

在物理学的领域中,理解运动是至关重要的,其中一个帮助我们理解运动的基本概念就是角位移。这个术语指的是物体沿着圆形路径移动时角度的变化。它以弧度、度或圈数来测量,表示物体绕固定点或轴旋转的角度。这一概念在工程、机器人技术,甚至日常应用如开车或运动等多个领域中都非常重要。为了更好地理解角位移的概念,我们可以考虑一个简单的例子:摩天轮。当摩天轮旋转时,轮子上的每个座椅沿着圆形路径移动。如果我们专注于某个特定的座椅,我们可以观察到它从一个位置移动到另一个位置。它的初始位置和最终位置之间相对于轮子中心形成的角度,就是我们所称的角位移角位移的重要性在于它能够清晰地理解旋转运动。与仅考虑直线行驶距离的线性位移不同,角位移考虑了运动的旋转方面。这在物体沿着圆或弧线移动的场景中是必不可少的,例如行星绕太阳运动或车辆轮子的转动。此外,角位移可以是正值或负值,具体取决于旋转的方向。例如,如果一个物体逆时针旋转,则角位移被视为正值,而顺时针旋转则产生负角位移。这种方向性成分对于准确描述旋转物体的运动至关重要。在实际应用中,工程师在设计涉及旋转的机制时经常利用角位移,例如齿轮、电机和连杆。通过计算角位移,他们可以确定某个部件将旋转多远,以及它将如何与系统内的其他组件相互作用。这种计算确保机器高效有效地运行,最小化错误并最大化性能。此外,在机器人技术领域,理解角位移对编程机器人手臂和其他自动化系统至关重要。机器人通常需要执行精确的运动,了解确切的角位移使工程师能够准确编程这些运动。这种精确性在装配线、外科手术机器人甚至自主车辆等任务中尤其重要,因为任何偏离预定路径的情况都可能导致故障或事故。总之,角位移是运动研究中特别是在旋转动力学中的一个重要概念。它为理解物体如何沿着圆形路径移动提供了框架,使工程师和科学家能够分析和预测旋转系统的行为。无论是在机械设计、机器人编程还是天体分析中,角位移的概念在我们理解物理世界中发挥着关键作用。通过掌握这一概念,我们能够增强创新能力并解决各个领域中的复杂问题。总体而言,角位移的研究不仅丰富了我们对物理学的知识,而且使我们能够以实际方式应用这些知识,从而推动技术进步和改善我们的日常生活。

相关单词

displacement

displacement详解:怎么读、什么意思、用法