complementary metal oxide semiconductors (CMOS)
简明释义
互补金属氧化物半导体
英英释义
例句
1.Many modern laptops incorporate complementary metal oxide semiconductors (CMOS) for efficient processing.
许多现代笔记本电脑采用互补金属氧化物半导体 (CMOS)以实现高效处理。
2.Engineers often choose complementary metal oxide semiconductors (CMOS) for their versatility in circuit design.
工程师通常选择互补金属氧化物半导体 (CMOS),因为它们在电路设计中的多功能性。
3.In digital cameras, complementary metal oxide semiconductors (CMOS) sensors are preferred for their low power consumption.
在数码相机中,互补金属氧化物半导体 (CMOS)传感器因其低功耗而受到青睐。
4.The latest smartphones use complementary metal oxide semiconductors (CMOS) technology for better image processing.
最新的智能手机使用互补金属氧化物半导体 (CMOS)技术来提高图像处理能力。
5.The performance of complementary metal oxide semiconductors (CMOS) has improved significantly over the years.
互补金属氧化物半导体 (CMOS)的性能在过去几年中显著提高。
作文
In the realm of modern electronics, few technologies have had as profound an impact as complementary metal oxide semiconductors (CMOS). This technology is the backbone of most electronic devices we use today, including smartphones, computers, and digital cameras. Understanding complementary metal oxide semiconductors (CMOS) is essential for anyone interested in electronics or computer engineering, as it plays a crucial role in both analog and digital circuits.The term complementary metal oxide semiconductors (CMOS) refers to a specific type of semiconductor technology that uses complementary pairs of p-type and n-type MOSFETs (metal-oxide-semiconductor field-effect transistors). The combination of these two types of transistors allows for low power consumption, making complementary metal oxide semiconductors (CMOS) particularly advantageous in battery-operated devices. This low power characteristic is one of the key reasons why CMOS technology has become so prevalent in the industry.One of the most notable applications of complementary metal oxide semiconductors (CMOS) is in the fabrication of integrated circuits (ICs). ICs are crucial components found in virtually all electronic devices, enabling them to perform complex functions while maintaining a compact size. The ability of complementary metal oxide semiconductors (CMOS) to integrate a large number of transistors onto a single chip has revolutionized the electronics industry, allowing for the development of powerful microprocessors and memory chips.Moreover, complementary metal oxide semiconductors (CMOS) technology has also made significant contributions to the field of imaging. CMOS image sensors are widely used in digital cameras and smartphones because they provide high-quality images with lower power consumption compared to traditional CCD (charge-coupled device) sensors. This advancement has enabled manufacturers to create thinner and lighter devices without compromising on image quality.The advantages of complementary metal oxide semiconductors (CMOS) extend beyond power efficiency and image quality. The technology also offers improved noise immunity and faster switching speeds, which are critical for high-performance applications. As technology continues to evolve, the demand for faster and more efficient electronic components will only grow, further solidifying the importance of complementary metal oxide semiconductors (CMOS) in future innovations.However, it is important to note that while complementary metal oxide semiconductors (CMOS) have numerous benefits, they are not without limitations. For instance, as the size of transistors continues to shrink in pursuit of higher performance, challenges such as leakage currents and variability in transistor characteristics can arise. Researchers are actively exploring new materials and architectures to overcome these challenges and enhance the capabilities of complementary metal oxide semiconductors (CMOS) technology.In conclusion, complementary metal oxide semiconductors (CMOS) represent a cornerstone of modern electronics, enabling a wide array of applications that shape our daily lives. From powering our devices to enhancing imaging technologies, the significance of complementary metal oxide semiconductors (CMOS) cannot be overstated. As we look towards the future, continued advancements in this technology will undoubtedly lead to even more innovative solutions, further embedding complementary metal oxide semiconductors (CMOS) into the fabric of our technological landscape.
在现代电子领域,少有技术能像互补金属氧化物半导体(CMOS)一样产生如此深远的影响。这项技术是我们今天使用的大多数电子设备的基础,包括智能手机、计算机和数码相机。理解互补金属氧化物半导体(CMOS)对于任何对电子或计算机工程感兴趣的人来说都是至关重要的,因为它在模拟和数字电路中都起着关键作用。术语互补金属氧化物半导体(CMOS)指的是一种特定类型的半导体技术,它使用互补的p型和n型MOSFET(金属氧化物半导体场效应晶体管)对。这两种类型的晶体管的组合允许低功耗,使得互补金属氧化物半导体(CMOS)在电池供电的设备中尤为有利。这种低功耗特性是互补金属氧化物半导体(CMOS)技术在行业中变得如此普遍的关键原因之一。互补金属氧化物半导体(CMOS)最显著的应用之一是集成电路(IC)的制造。IC是几乎所有电子设备中的关键组件,使其能够执行复杂的功能,同时保持紧凑的大小。互补金属氧化物半导体(CMOS)能够将大量晶体管集成到单个芯片上,这一特性彻底改变了电子行业,促成了强大微处理器和存储芯片的发展。此外,互补金属氧化物半导体(CMOS)技术还对成像领域做出了重要贡献。CMOS图像传感器广泛用于数码相机和智能手机,因为与传统的CCD(电荷耦合器件)传感器相比,它们提供更高质量的图像且功耗更低。这一进步使制造商能够在不影响图像质量的情况下创造更薄、更轻的设备。互补金属氧化物半导体(CMOS)的优势不仅限于功耗效率和图像质量。该技术还提供了更好的噪声免疫能力和更快的开关速度,这对高性能应用至关重要。随着技术的不断发展,对更快和更高效电子元件的需求只会增加,这进一步巩固了互补金属氧化物半导体(CMOS)在未来创新中的重要性。然而,需要注意的是,尽管互补金属氧化物半导体(CMOS)具有众多优点,但也并非没有局限性。例如,随着晶体管尺寸在追求更高性能的过程中不断缩小,可能会出现泄漏电流和晶体管特性变化等挑战。研究人员正在积极探索新材料和架构,以克服这些挑战并增强互补金属氧化物半导体(CMOS)技术的能力。总之,互补金属氧化物半导体(CMOS)代表了现代电子的基石,使各种应用成为可能,塑造了我们的日常生活。从为我们的设备供电到增强成像技术,互补金属氧化物半导体(CMOS)的重要性不容小觑。展望未来,这项技术的持续进步无疑将导致更多创新解决方案的出现,进一步将互补金属氧化物半导体(CMOS)嵌入到我们技术景观的结构中。
相关单词