string polygon
简明释义
肃边形
英英释义
例句
1.Using a string polygon, the mathematician demonstrated various properties of polygons.
数学家使用字符串多边形演示了多边形的各种属性。
2.The architect designed the building facade using a string polygon approach for aesthetics.
建筑师采用字符串多边形的方法设计了建筑外立面以追求美观。
3.The artist used a string polygon to create a unique geometric design in her sculpture.
艺术家使用字符串多边形在她的雕塑中创造了独特的几何设计。
4.The game developer implemented a string polygon system for rendering 2D characters.
游戏开发者实现了一种字符串多边形系统来渲染2D角色。
5.In computer graphics, a string polygon can represent complex shapes with minimal data.
在计算机图形学中,字符串多边形可以用最少的数据表示复杂的形状。
作文
In the world of computational geometry, one fascinating concept is the string polygon. A string polygon can be defined as a polygon that is formed by connecting a finite number of points in a specific order, resembling a string that ties these points together. This concept is not only interesting from a theoretical perspective but also has practical applications in various fields including computer graphics, robotics, and geographic information systems (GIS). Understanding the properties and applications of string polygons can provide valuable insights into how we model and interact with complex shapes in a digital environment.To begin with, the construction of a string polygon involves selecting a set of vertices, or points, in a two-dimensional space. These points are then connected in a sequential manner to create edges, forming the overall shape of the polygon. The arrangement of these points can greatly affect the characteristics of the resulting string polygon. For instance, if the points are arranged in a random manner, the polygon may appear irregular and complex. Conversely, if the points are carefully selected to create a regular pattern, the string polygon may exhibit symmetry and simplicity.One of the key aspects of string polygons is their ability to represent different shapes and structures. In computer graphics, for example, string polygons are often used to create models of objects and characters. By manipulating the positions of the vertices, artists and designers can create intricate designs that can be animated or rendered in three dimensions. This flexibility makes string polygons an essential tool in the field of digital art and animation.Moreover, in the realm of robotics, string polygons play a crucial role in path planning and navigation. Robots often need to traverse environments filled with obstacles, and understanding the layout of these spaces can be modeled using string polygons. By representing the pathways and barriers as polygons, algorithms can be developed to find the most efficient routes for robots to follow, ensuring safe and effective movement.In addition to computer graphics and robotics, string polygons are also significant in geographic information systems (GIS). In GIS, spatial data is often represented using polygons to delineate areas such as land use, property boundaries, and natural features. String polygons can be utilized to model these areas accurately, allowing for better analysis and decision-making in urban planning, environmental management, and resource allocation.Furthermore, the study of string polygons can lead to a deeper understanding of mathematical concepts such as topology and geometry. Researchers explore various properties of string polygons, including their perimeter, area, and the relationships between different polygons. This exploration can yield new mathematical theories and applications, contributing to the advancement of the field.In conclusion, the concept of the string polygon serves as a bridge between theoretical mathematics and practical applications across various disciplines. Whether in computer graphics, robotics, or geographic information systems, string polygons provide a versatile framework for modeling and analyzing complex shapes and structures. By further exploring this concept, we can unlock new possibilities in technology, art, and science, illustrating the profound impact that mathematical principles have on our understanding of the world around us.
在计算几何的世界中,一个迷人的概念是字符串多边形。字符串多边形可以定义为通过以特定顺序连接有限数量的点而形成的多边形,类似于将这些点绑在一起的字符串。这个概念不仅从理论上有趣,而且在计算机图形学、机器人技术和地理信息系统(GIS)等多个领域具有实际应用。理解字符串多边形的属性和应用可以为我们如何在数字环境中建模和与复杂形状互动提供宝贵的见解。首先,字符串多边形的构造涉及在二维空间中选择一组顶点或点。这些点然后按顺序连接以创建边,从而形成多边形的整体形状。这些点的排列会极大地影响生成的字符串多边形的特性。例如,如果点以随机方式排列,则多边形可能看起来不规则且复杂。相反,如果点被仔细选择以创建规则模式,则字符串多边形可能表现出对称性和简单性。字符串多边形的一个关键方面是它们能够表示不同的形状和结构。例如,在计算机图形学中,字符串多边形通常用于创建物体和角色的模型。通过操纵顶点的位置,艺术家和设计师可以创建复杂的设计,这些设计可以在三维中进行动画或渲染。这种灵活性使得字符串多边形成为数字艺术和动画领域的基本工具。此外,在机器人技术领域,字符串多边形在路径规划和导航中发挥着至关重要的作用。机器人经常需要穿越充满障碍的环境,而理解这些空间的布局可以用字符串多边形来建模。通过将路径和障碍物表示为多边形,可以开发算法来找到机器人行进的最有效路线,确保安全和有效的移动。除了计算机图形学和机器人技术,字符串多边形在地理信息系统(GIS)中也具有重要意义。在GIS中,空间数据通常使用多边形表示,以划定土地使用、财产边界和自然特征等区域。字符串多边形可以用于准确建模这些区域,从而在城市规划、环境管理和资源分配中实现更好的分析和决策。此外,对字符串多边形的研究可以加深对拓扑学和几何学等数学概念的理解。研究人员探索字符串多边形的各种属性,包括其周长、面积以及不同多边形之间的关系。这种探索可以产生新的数学理论和应用,促进该领域的发展。总之,字符串多边形的概念在理论数学与各学科的实际应用之间架起了一座桥梁。无论是在计算机图形学、机器人技术还是地理信息系统中,字符串多边形都提供了一个多功能的框架,用于建模和分析复杂的形状和结构。通过进一步探索这一概念,我们可以解锁技术、艺术和科学的新可能性,说明数学原理对我们理解周围世界的深远影响。
相关单词