stefan boltzmann's constant

简明释义

斯蒂芬 玻尔兹曼常数

英英释义

Stefan-Boltzmann's constant is a physical constant denoting the total energy radiated per unit surface area of a black body in unit time, which is proportional to the fourth power of the black body's absolute temperature.

斯特凡-玻尔兹曼常数是一个物理常数,表示单位时间内黑体每单位表面积辐射的总能量,与黑体绝对温度的四次方成正比。

例句

1.In astrophysics, Stefan Boltzmann's constant (斯特藩-玻尔兹曼常数) helps determine the temperature of stars based on their luminosity.

在天体物理学中,斯特藩-玻尔兹曼常数 (Stefan Boltzmann's constant) 有助于根据恒星的光度来确定其温度。

2.The value of Stefan Boltzmann's constant (斯特藩-玻尔兹曼常数) is crucial for calculating the total energy radiated by a black body.

计算黑体辐射的总能量时,斯特藩-玻尔兹曼常数 (Stefan Boltzmann's constant) 的值至关重要。

3.Engineers use Stefan Boltzmann's constant (斯特藩-玻尔兹曼常数) to calculate heat transfer in thermal systems.

工程师使用 斯特藩-玻尔兹曼常数 (Stefan Boltzmann's constant) 来计算热系统中的热传递。

4.To find the power emitted by a perfect black body, one must use Stefan Boltzmann's constant (斯特藩-玻尔兹曼常数).

要找出完美黑体发出的功率,必须使用 斯特藩-玻尔兹曼常数 (Stefan Boltzmann's constant)。

5.The formula involving Stefan Boltzmann's constant (斯特藩-玻尔兹曼常数) is essential in climate modeling.

涉及 斯特藩-玻尔兹曼常数 (Stefan Boltzmann's constant) 的公式在气候模型中是必不可少的。

作文

The universe is filled with fascinating principles of physics that govern the behavior of matter and energy. One such principle is encapsulated in what we call Stefan Boltzmann's constant, a fundamental concept in thermodynamics and astrophysics. This constant, denoted by the symbol σ (sigma), plays a crucial role in understanding how objects emit radiation based on their temperature. It is defined as the proportionality factor in the Stefan-Boltzmann law, which states that the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of its absolute temperature. The formula can be expressed as: E = σT^4, where E represents the energy emitted, T is the absolute temperature in Kelvin, and σ is the Stefan Boltzmann's constant. Understanding this constant is essential for various scientific fields, including astronomy, climate science, and engineering. For instance, astronomers use the Stefan Boltzmann's constant to estimate the temperature of stars by analyzing their emitted radiation. By measuring the brightness of a star and applying the Stefan-Boltzmann law, scientists can determine its surface temperature, which provides insight into its composition and lifecycle. Similarly, in climate science, this constant helps in modeling Earth's energy balance, allowing researchers to understand how much solar energy is absorbed by our planet and how much is radiated back into space.The value of Stefan Boltzmann's constant is approximately 5.67 × 10^-8 W/m²K⁴. This small number may seem insignificant, but it has profound implications when applied to large-scale systems, such as planets and stars. For example, the Earth, with an average temperature of about 255 K, emits a significant amount of thermal radiation into space. Using the Stefan Boltzmann's constant, we can calculate that the Earth radiates approximately 240 watts per square meter into the atmosphere. This understanding is critical for assessing the impacts of greenhouse gases and climate change, as it illustrates how alterations in atmospheric composition can affect Earth's energy balance.Moreover, the Stefan Boltzmann's constant is not just confined to theoretical applications; it also has practical implications in engineering. Engineers utilize this constant when designing heating systems, thermal insulation, and energy-efficient buildings. By applying the principles of the Stefan-Boltzmann law, they can optimize the thermal properties of materials, ensuring that buildings retain heat during winter while remaining cool in summer. This optimization is crucial for energy conservation and reducing overall energy costs.In conclusion, the Stefan Boltzmann's constant is a vital component of our understanding of thermal radiation and energy transfer. Its applications span across various scientific disciplines and practical engineering solutions. By grasping the significance of this constant, we can better appreciate the intricate relationships between temperature, energy, and the physical world around us. As we continue to explore the universe and confront pressing challenges like climate change, the principles embodied by the Stefan Boltzmann's constant will undoubtedly remain at the forefront of scientific inquiry and innovation.

宇宙中充满了迷人的物理原理,这些原理支配着物质和能量的行为。其中一个原则体现在我们所称的斯特凡-玻尔兹曼常数中,这是热力学和天体物理学中的一个基本概念。这个常数用希腊字母σ(西格玛)表示,在理解物体根据其温度辐射的方式上起着至关重要的作用。它被定义为斯特凡-玻尔兹曼定律中的比例因子,该定律指出,黑体单位表面每单位时间辐射的总能量与其绝对温度的四次方成正比。公式可以表示为:E = σT^4,其中E代表辐射的能量,T是开尔文温标下的绝对温度,而σ就是斯特凡-玻尔兹曼常数。理解这个常数对于包括天文学、气候科学和工程等多个科学领域至关重要。例如,天文学家利用斯特凡-玻尔兹曼常数通过分析恒星发出的辐射来估计恒星的温度。通过测量恒星的亮度并应用斯特凡-玻尔兹曼定律,科学家可以确定其表面温度,从而深入了解其成分和生命周期。同样,在气候科学中,这个常数有助于建模地球的能量平衡,使研究人员能够理解我们的星球吸收了多少太阳能,以及多少能量被辐射回太空。斯特凡-玻尔兹曼常数的值约为5.67 × 10^-8 W/m²K⁴。这个小数字虽然看似微不足道,但在应用于大规模系统(如行星和恒星)时具有深远的影响。例如,地球的平均温度约为255 K,向太空辐射出大量热辐射。利用斯特凡-玻尔兹曼常数,我们可以计算出地球每平方米向大气辐射约240瓦特的能量。这一理解对于评估温室气体和气候变化的影响至关重要,因为它说明了大气成分的变化如何影响地球的能量平衡。此外,斯特凡-玻尔兹曼常数不仅限于理论应用;它在工程中也具有实际意义。工程师在设计供暖系统、热绝缘和节能建筑时利用这个常数。通过应用斯特凡-玻尔兹曼定律的原理,他们可以优化材料的热性能,确保建筑在冬季保持热量,同时在夏季保持凉爽。这种优化对于节能和降低总体能源成本至关重要。总之,斯特凡-玻尔兹曼常数是我们理解热辐射和能量转移的重要组成部分。它的应用跨越多个科学学科和实际工程解决方案。通过掌握这个常数的重要性,我们可以更好地欣赏温度、能量以及我们周围物理世界之间复杂的关系。随着我们继续探索宇宙并应对气候变化等紧迫挑战,斯特凡-玻尔兹曼常数所体现的原理无疑将始终处于科学研究和创新的前沿。