space velocity
简明释义
宇宙速度
英英释义
例句
1.The space velocity 空间速度 required for Mars missions is significantly higher than that for the Moon.
火星任务所需的空间速度 空间速度明显高于月球任务。
2.A lower space velocity 空间速度 can result in a satellite falling back to Earth.
较低的空间速度 空间速度可能导致卫星重新坠落到地球。
3.The spacecraft achieved a high space velocity 空间速度 to escape Earth's gravitational pull.
这艘宇宙飞船达到了高的空间速度 空间速度以逃离地球的引力。
4.To calculate the space velocity 空间速度 of a satellite, we need to know its orbital radius.
要计算卫星的空间速度 空间速度,我们需要知道它的轨道半径。
5.Engineers must ensure the rocket reaches the necessary space velocity 空间速度 during launch.
工程师必须确保火箭在发射时达到所需的空间速度 空间速度。
作文
In the realm of astrophysics and space exploration, the term space velocity refers to the speed at which an object moves through space. This concept is crucial for understanding how spacecraft achieve their orbits and navigate through the vastness of the universe. The space velocity of a spacecraft is not just a measure of its speed; it also encompasses the direction of travel and the gravitational influences from celestial bodies. To fully grasp the significance of space velocity, one must consider several factors that contribute to a spacecraft's performance and mission objectives.Firstly, the space velocity is essential for achieving escape velocity, which is the minimum speed needed for an object to break free from a planet's gravitational pull. For instance, Earth's escape velocity is approximately 11.2 kilometers per second. If a rocket does not reach this speed, it will not be able to leave Earth's atmosphere and enter space. Therefore, engineers meticulously calculate the required thrust and fuel necessary to ensure that a spacecraft can achieve adequate space velocity during launch.Moreover, once in orbit, a spacecraft must maintain a specific space velocity to remain in a stable trajectory. This velocity varies depending on the altitude and type of orbit. For example, low Earth orbit (LEO) requires a space velocity of about 7.8 kilometers per second, while geostationary orbits require a lower velocity of around 3.1 kilometers per second. Understanding these velocities allows mission planners to design efficient paths for satellites and other space missions, ensuring they can perform their intended functions, such as communication or Earth observation.Additionally, the space velocity is influenced by numerous external factors, including gravitational forces from other celestial bodies, atmospheric drag, and the spacecraft's own propulsion systems. As a spacecraft travels further from Earth, it may encounter varying gravitational fields from planets and moons, which can alter its space velocity. Engineers must account for these variations when plotting trajectories for interplanetary missions, as they can significantly affect fuel consumption and mission success.Furthermore, advancements in technology have allowed for innovative propulsion methods that can enhance a spacecraft's space velocity. Traditional chemical rockets are being supplemented with ion thrusters and solar sails, which offer greater efficiency and can achieve higher velocities over time. These technologies are particularly valuable for long-duration missions, such as those aimed at Mars or beyond, where every bit of velocity gained can reduce travel time and resource consumption.In conclusion, the concept of space velocity is fundamental to the field of aerospace engineering and space exploration. It encompasses not only the speed of a spacecraft but also the complex interplay of gravitational forces, orbital mechanics, and propulsion technology. As humanity continues to push the boundaries of space exploration, a deep understanding of space velocity will be essential for the success of future missions and the expansion of our presence in the cosmos. By mastering this concept, scientists and engineers can develop more efficient spacecraft, paving the way for new discoveries and advancements in our understanding of the universe.
在天体物理学和太空探索领域,术语space velocity指的是物体在太空中移动的速度。这个概念对于理解航天器如何实现其轨道以及如何在浩瀚宇宙中导航至关重要。航天器的space velocity不仅仅是其速度的衡量;它还包括旅行方向和来自天体的引力影响。要充分理解space velocity的重要性,必须考虑几个影响航天器性能和任务目标的因素。首先,space velocity对于实现逃逸速度至关重要,逃逸速度是物体摆脱行星引力所需的最低速度。例如,地球的逃逸速度约为每秒11.2公里。如果火箭无法达到这个速度,它将无法离开地球大气层进入太空。因此,工程师们仔细计算所需的推力和燃料,以确保航天器在发射期间能够达到足够的space velocity。此外,一旦进入轨道,航天器必须保持特定的space velocity以保持稳定的轨迹。这种速度因高度和轨道类型而异。例如,低地球轨道(LEO)要求的space velocity约为每秒7.8公里,而静止轨道所需的速度约为每秒3.1公里。理解这些速度使得任务规划者能够设计高效的卫星和其他太空任务的路径,确保它们能够执行预定功能,例如通信或地球观测。此外,space velocity还受到许多外部因素的影响,包括来自其他天体的引力、空气阻力以及航天器自身的推进系统。随着航天器向远离地球的方向旅行,它可能会遇到来自行星和卫星的不同引力场,这可能会改变其space velocity。工程师们在绘制行星际任务的轨迹时,必须考虑这些变化,因为它们可能显著影响燃料消耗和任务成功率。此外,技术的进步使得创新的推进方法能够增强航天器的space velocity。传统的化学火箭正被离子推进器和太阳帆等技术所补充,这些技术提供了更高的效率,并能随着时间的推移实现更高的速度。这些技术在长时间的任务中尤为重要,例如那些针对火星或更远地方的任务,在这些任务中,每一点获得的速度都能减少旅行时间和资源消耗。总之,space velocity的概念对航空航天工程和太空探索领域至关重要。它不仅包含航天器的速度,还涵盖了引力作用、轨道力学和推进技术之间复杂的相互作用。随着人类不断推动太空探索的边界,对space velocity的深入理解将对未来任务的成功和我们在宇宙中存在的扩展至关重要。通过掌握这一概念,科学家和工程师可以开发出更高效的航天器,为新的发现和我们对宇宙理解的进步铺平道路。
相关单词