radioactive isotope

简明释义

放射性同位素

英英释义

A radioactive isotope is an atom that has an unstable nucleus and emits radiation in the form of particles or electromagnetic waves as it decays into a more stable form.

放射性同位素是指具有不稳定核的原子,在衰变为更稳定形式的过程中以粒子或电磁波的形式释放辐射。

例句

1.The radioactive isotope 放射性同位素 used in this experiment has a half-life of 10 years.

本实验中使用的放射性同位素的半衰期为10年。

2.The doctor used a radioactive isotope 放射性同位素 to trace the flow of blood in the patient's body.

医生使用了一种放射性同位素来追踪病人身体内的血液流动。

3.In nuclear medicine, a radioactive isotope 放射性同位素 can help diagnose various diseases.

在核医学中,放射性同位素可以帮助诊断各种疾病。

4.The radioactive isotope 放射性同位素 emitted radiation that could be detected by special instruments.

放射性同位素发出的辐射可以被特殊仪器探测到。

5.Researchers are studying how radioactive isotopes 放射性同位素 can be used for cancer treatment.

研究人员正在研究如何将放射性同位素用于癌症治疗。

作文

The study of elements and their isotopes has always fascinated scientists, particularly when it comes to the concept of radioactive isotope (放射性同位素). These unique forms of elements have applications in various fields, including medicine, archaeology, and energy production. A radioactive isotope is an isotope that is unstable and decays over time, releasing radiation in the process. This decay can be harnessed for numerous purposes, making radioactive isotopes invaluable to modern science.In medicine, radioactive isotopes are used in diagnostic imaging and treatment. For instance, Technetium-99m, a widely used radioactive isotope, plays a crucial role in medical imaging. It allows doctors to visualize internal organs and detect abnormalities, such as tumors, with great precision. The ability to track the distribution of this isotope within the body helps in diagnosing conditions early, increasing the chances of successful treatment.Furthermore, radioactive isotopes are also employed in cancer therapy. Cobalt-60, another example, emits gamma rays that can target and destroy cancer cells. This targeted approach minimizes damage to surrounding healthy tissue, offering a more effective treatment option for patients. The use of radioactive isotopes in medicine exemplifies how these elements can contribute positively to human health and well-being.Beyond medicine, radioactive isotopes have significant implications in archaeology and geology. Carbon-14 dating is a prime example of how radioactive isotopes can be utilized to determine the age of ancient artifacts and fossils. By measuring the remaining amount of Carbon-14 in a sample, scientists can estimate when the organism died, providing valuable insights into historical timelines and human evolution. This technique has revolutionized our understanding of history and prehistory, allowing researchers to piece together the past with remarkable accuracy.In the field of energy production, radioactive isotopes play a critical role in nuclear power generation. Uranium-235 and Plutonium-239 are two isotopes that undergo fission, releasing vast amounts of energy. This energy is harnessed to produce electricity, providing a substantial portion of the world’s energy supply. While the use of radioactive isotopes in nuclear power has sparked debates regarding safety and environmental impact, there is no denying their importance in meeting global energy demands.Despite the numerous benefits associated with radioactive isotopes, there are inherent risks involved. The radiation emitted during decay can pose health hazards if not managed properly. Therefore, stringent regulations and safety measures are essential when handling and disposing of radioactive isotopes. Scientists and engineers continuously work on improving safety protocols to minimize exposure and ensure that the advantages of these isotopes can be enjoyed without compromising public health.In conclusion, radioactive isotopes are fascinating elements that hold immense potential across various fields. From advancing medical technology to unraveling the mysteries of the past and powering our future, their applications are diverse and impactful. Understanding the properties and uses of radioactive isotopes is crucial for harnessing their power responsibly and effectively. As research continues to evolve, the role of radioactive isotopes in society will undoubtedly expand, leading to new discoveries and innovations that can benefit humanity as a whole.

元素及其同位素的研究一直吸引着科学家们,尤其是当涉及到“放射性同位素”这个概念时。这些独特的元素形式在医学、考古学和能源生产等多个领域都有应用。“放射性同位素”是指一种不稳定并随时间衰变的同位素,在此过程中释放出辐射。这种衰变可以被利用于许多目的,使得放射性同位素对现代科学来说是不可或缺的。在医学中,放射性同位素用于诊断成像和治疗。例如,钼-99是一种广泛使用的放射性同位素,在医学成像中发挥着关键作用。它使医生能够精确地可视化内部器官并检测异常,例如肿瘤。追踪这种同位素在体内的分布有助于早期诊断疾病,提高成功治疗的机会。此外,放射性同位素还用于癌症治疗。钴-60就是另一个例子,它发射伽马射线,可以针对并摧毁癌细胞。这种靶向方法最小化了对周围健康组织的损害,为患者提供了更有效的治疗选择。在医学中使用放射性同位素的例子展示了这些元素如何积极贡献于人类健康与福祉。除了医学,放射性同位素在考古学和地质学中也具有重要意义。碳-14测年是放射性同位素用于确定古代文物和化石年龄的一个典型例子。通过测量样本中剩余的碳-14量,科学家可以估算生物体死亡的时间,为历史时间线和人类进化提供宝贵的见解。这项技术彻底改变了我们对历史和史前时代的理解,使研究人员能够以惊人的准确性拼凑过去。在能源生产领域,放射性同位素在核电发电中发挥着关键作用。铀-235和钚-239是两种经历裂变的同位素,释放出大量能量。这种能量被用来生产电力,为世界提供了相当一部分的能源供应。尽管在核电中使用放射性同位素引发了关于安全性和环境影响的辩论,但不可否认的是它们在满足全球能源需求方面的重要性。尽管与放射性同位素相关的众多好处,但也存在固有的风险。衰变过程中释放的辐射如果处理不当可能会对健康造成危害。因此,在处理和处置放射性同位素时,严格的法规和安全措施至关重要。科学家和工程师不断致力于改善安全协议,以最小化暴露,确保可以在不危害公众健康的情况下享受这些同位素的优势。总之,放射性同位素是迷人的元素,在各个领域都具有巨大的潜力。从推进医疗技术到揭开过去的神秘,再到为我们的未来提供动力,它们的应用多种多样且影响深远。理解放射性同位素的性质和用途对于负责任和有效地利用它们的力量至关重要。随着研究的不断发展,放射性同位素在社会中的角色无疑将扩大,带来新的发现和创新,造福全人类。

相关单词

isotope

isotope详解:怎么读、什么意思、用法