diastereomeric
简明释义
英[daɪəsterɪəˈmerɪk]美[daɪəˈsteriːoʊmerɪk]
adj. 非对映的
英英释义
单词用法
非对映体过量 | |
非对映体构型 | |
非对映体混合物 | |
分析非对映体化合物 | |
分离非对映体异构体 | |
表征非对映体结构 |
同义词
非对映体 | 非对映体具有不同的物理性质。 | ||
立体异构体 | Stereoisomers can be classified into enantiomers and diastereomers. | 立体异构体可以分为对映体和非对映体。 |
反义词
例句
1.Separations based on formation of diastereomeric ion-pairs were fulfilled in systems with an organic mobile phase using achiral and chiral stationary phases.
应用手性和非手性柱固定相,在正相色谱系统中,手性药物和手性离子对试剂形成非对映离子对复合物,从而使手性药物得以分离。
2.Separations based on formation of diastereomeric ion-pairs were fulfilled in systems with an organic mobile phase using achiral and chiral stationary phases.
应用手性和非手性柱固定相,在正相色谱系统中,手性药物和手性离子对试剂形成非对映离子对复合物,从而使手性药物得以分离。
3.In organic chemistry, diastereomeric 非对映异构体的 relationships can significantly affect the properties of substances.
在有机化学中,diastereomeric 非对映异构体的关系可以显著影响物质的性质。
4.The synthesis of diastereomeric 非对映异构体的 products requires careful control of reaction conditions.
合成diastereomeric 非对映异构体的产物需要仔细控制反应条件。
5.The two compounds are not mirror images, which means they are considered diastereomeric 非对映异构体的.
这两种化合物不是镜像,因此被认为是diastereomeric 非对映异构体的.
6.When analyzing the mixture, we found that several diastereomeric 非对映异构体的 forms were present.
在分析混合物时,我们发现存在几种diastereomeric 非对映异构体的形式。
7.The diastereomeric 非对映异构体的 pairs exhibited different melting points.
这些diastereomeric 非对映异构体的对表现出不同的熔点。
作文
In the field of chemistry, understanding the various types of isomers is crucial for grasping the complexities of molecular structures and their properties. One such category of isomers is diastereomers. Diastereomers are stereoisomers that are not mirror images of each other. This means that while they share the same molecular formula and connectivity of atoms, their spatial arrangement differs in a way that does not allow one to be superimposed on the other. The concept of diastereomeric relationships is essential in organic chemistry, particularly when studying compounds with multiple chiral centers.For example, consider a molecule with two chiral centers. This molecule can exist in several forms: one form may be an enantiomer, which is a non-superimposable mirror image, while the other forms could be classified as diastereomeric (即非对映体的). These diastereomeric forms will have different physical properties, such as boiling points, melting points, and solubility. Therefore, the ability to distinguish between these forms is vital for chemists when synthesizing compounds or predicting their behavior in reactions.The importance of diastereomeric compounds extends beyond theoretical chemistry; it has practical implications in pharmaceuticals and drug development. Many drugs are designed to target specific biological pathways, and the different diastereomeric forms of a drug can exhibit varied biological activities. For instance, one diastereomer might be therapeutically beneficial, while another could be inactive or even harmful. As a result, pharmaceutical companies invest significant resources into understanding the diastereomeric relationships of their compounds to ensure safety and efficacy in treatments.Moreover, the study of diastereomeric relationships also plays a role in the field of materials science. Polymers, for example, can have different configurations that lead to distinct physical properties. By manipulating the diastereomeric forms of monomers used in polymerization, scientists can create materials with tailored characteristics suitable for specific applications, from flexible plastics to rigid composites.In summary, the term diastereomeric represents a fundamental aspect of stereochemistry that encompasses a wide range of applications in both theoretical and practical realms. The ability to identify and differentiate diastereomeric compounds is crucial for chemists, particularly in areas such as drug design and materials engineering. Understanding the nuances of these relationships not only enhances our knowledge of chemical behavior but also drives innovation in various scientific fields. As we continue to explore the complexities of molecular interactions, the significance of diastereomeric relationships will undoubtedly remain at the forefront of chemical research and development.
在化学领域,理解各种同分异构体的类型对于掌握分子结构及其性质的复杂性至关重要。其中一个同分异构体的类别是非对映体。非对映体是指不是彼此镜像的立体异构体。这意味着,尽管它们具有相同的分子式和原子的连接方式,但它们的空间排列有所不同,因此无法重叠。非对映体关系的概念在有机化学中至关重要,特别是在研究具有多个手性中心的化合物时。例如,考虑一个具有两个手性中心的分子。该分子可以以几种形式存在:一种形式可能是对映体,即不可重叠的镜像,而其他形式可以被归类为diastereomeric(即非对映体的)。这些diastereomeric形式将具有不同的物理性质,例如沸点、熔点和溶解度。因此,区分这些形式的能力对于化学家在合成化合物或预测其在反应中的行为时至关重要。diastereomeric化合物的重要性不仅限于理论化学;它在制药和药物开发中也具有实际意义。许多药物旨在针对特定的生物途径,而药物的不同diastereomeric形式可能表现出不同的生物活性。例如,一种非对映体可能具有治疗效果,而另一种可能无效甚至有害。因此,制药公司在理解其化合物的diastereomeric关系上投入了大量资源,以确保治疗的安全性和有效性。此外,diastereomeric关系的研究在材料科学领域也发挥着作用。例如,聚合物可以具有不同的构型,导致截然不同的物理性质。通过操控用于聚合的单体的diastereomeric形式,科学家可以创造出具有特定应用所需特性的材料,从柔性塑料到刚性复合材料。总之,diastereomeric一词代表了立体化学的一个基本方面,涵盖了理论和实践领域的广泛应用。识别和区分diastereomeric化合物的能力对于化学家至关重要,特别是在药物设计和材料工程等领域。理解这些关系的细微差别不仅增强了我们对化学行为的认识,还推动了各个科学领域的创新。随着我们继续探索分子相互作用的复杂性,diastereomeric关系的重要性无疑将始终处于化学研究和发展的前沿。