polarization microscope polarizing microscope

简明释义

偏光显微镜

英英释义

A polarization microscope is an optical microscope that uses polarized light to enhance the contrast in transparent specimens. It is commonly used in materials science, biology, and geology to study the properties of minerals and biological tissues.

偏振显微镜是一种光学显微镜,使用偏振光来增强透明标本的对比度。它通常用于材料科学、生物学和地质学,以研究矿物和生物组织的特性。

A polarizing microscope is a type of polarization microscope specifically designed to observe birefringent materials, which have different refractive indices in different directions. This type of microscope is equipped with polarizers and compensators to analyze the optical properties of the samples.

偏振显微镜是一种专门设计用于观察双折射材料的偏振显微镜,这些材料在不同方向上具有不同的折射率。这种显微镜配备了偏振器和补偿器,以分析样品的光学特性。

例句

1.The researcher used a polarization microscope to analyze the crystalline structures in the sample.

研究人员使用偏振显微镜分析样品中的晶体结构。

2.The lab technician adjusted the polarization microscope to enhance the visibility of the fibers.

实验室技术员调整了偏振显微镜以增强纤维的可见性。

3.Using a polarizing microscope, the biologist observed the cellular structures in detail.

生物学家使用偏光显微镜详细观察细胞结构。

4.In geology, a polarizing microscope is essential for identifying minerals.

在地质学中,偏光显微镜对于识别矿物至关重要。

5.The polarization microscope revealed unique optical properties of the mineral samples.

偏振显微镜揭示了矿物样品独特的光学特性。

作文

The world of microscopy is filled with various techniques that allow scientists to observe and analyze materials at a microscopic level. Among these techniques, the polarization microscope (偏振显微镜) stands out as a powerful tool for studying the optical properties of specimens. This type of microscope utilizes polarized light to enhance the contrast of transparent or translucent samples. The polarizing microscope (偏振显微镜) is especially useful in fields such as mineralogy, biology, and materials science, where understanding the structure and composition of materials is crucial.A polarization microscope operates by filtering light through two polarizers: one before the sample and one after. The first polarizer, known as the polarizer, allows only light waves vibrating in a specific direction to pass through. When this polarized light hits the sample, it interacts with the material's molecular structure, which can cause the light to change its polarization state. After passing through the sample, the light then goes through a second polarizer, called the analyzer. By adjusting the orientation of the analyzer, researchers can visualize the effects of the sample on the polarized light, revealing details that would otherwise remain hidden under conventional light microscopy.One of the primary advantages of using a polarizing microscope is its ability to distinguish between different types of materials based on their optical properties. For instance, birefringent materials, which have different refractive indices depending on the polarization direction of light, can be easily identified and analyzed. This characteristic is particularly important in mineralogy, where the identification of minerals often relies on their optical behavior under polarized light.In biological studies, the polarization microscope can be used to examine structures within cells and tissues that are not easily visible with standard microscopy techniques. For example, collagen fibers and other fibrous proteins exhibit unique optical properties that can be highlighted using polarized light. This capability allows researchers to gain insights into the organization and function of biological tissues, aiding in the understanding of various diseases and conditions.Moreover, the polarizing microscope plays a significant role in materials science, particularly in the study of polymers and composites. By analyzing how these materials respond to polarized light, scientists can infer information about their molecular arrangement and mechanical properties. This knowledge is essential for developing new materials with desired characteristics for various applications, from aerospace engineering to biomedical devices.In conclusion, the polarization microscope (偏振显微镜) and the polarizing microscope (偏振显微镜) are invaluable tools in the scientific community. Their ability to provide detailed information about the optical properties of materials opens up new avenues for research and discovery across multiple disciplines. As technology advances, the applications of these microscopes will likely expand, further enhancing our understanding of the microscopic world around us. By mastering the use of polarization microscopes, researchers can unlock the secrets of complex materials and biological systems, paving the way for innovative solutions to contemporary challenges.

显微镜的世界充满了各种技术,使科学家能够在微观层面观察和分析材料。在这些技术中,偏振显微镜(polarization microscope)作为一种强大的工具,在研究样品的光学特性方面脱颖而出。这种显微镜利用偏振光来增强透明或半透明样本的对比度。偏振显微镜(polarizing microscope)在矿物学、生物学和材料科学等领域尤其有用,在这些领域中,理解材料的结构和组成至关重要。偏振显微镜通过在样本前后使用两个偏振器来工作。第一个偏振器称为偏振器,只允许以特定方向振动的光波通过。当这种偏振光照射到样本上时,它与材料的分子结构相互作用,这可能导致光的偏振状态发生变化。经过样本后,光再通过第二个偏振器,称为分析器。通过调整分析器的方向,研究人员可以可视化样本对偏振光的影响,揭示在常规光学显微镜下可能隐藏的细节。使用偏振显微镜的主要优点之一是能够根据材料的光学特性区分不同类型的材料。例如,双折射材料在光的偏振方向上具有不同的折射率,可以很容易地被识别和分析。这一特征在矿物学中尤为重要,因为矿物的识别通常依赖于它们在偏振光下的光学行为。在生物研究中,偏振显微镜可以用于检查细胞和组织内部的结构,这些结构在标准显微技术下不易可见。例如,胶原纤维和其他纤维蛋白展现出独特的光学特性,可以通过偏振光突出显示。这种能力使研究人员能够深入了解生物组织的组织和功能,有助于理解各种疾病和病症。此外,偏振显微镜在材料科学中也发挥着重要作用,特别是在聚合物和复合材料的研究中。通过分析这些材料对偏振光的响应,科学家可以推断出关于其分子排列和机械特性的信息。这一知识对开发具有所需特性的各种应用的新材料至关重要,从航空航天工程到生物医学设备。总之,偏振显微镜(polarization microscope)和偏振显微镜(polarizing microscope)是科学界不可或缺的工具。它们提供有关材料光学特性的详细信息,开启了多个学科研究与发现的新途径。随着技术的进步,这些显微镜的应用可能会扩大,进一步增强我们对周围微观世界的理解。通过掌握偏振显微镜的使用,研究人员可以解锁复杂材料和生物系统的秘密,为当代挑战提供创新解决方案。

相关单词

polarization

polarization详解:怎么读、什么意思、用法

microscope

microscope详解:怎么读、什么意思、用法

microscope

microscope详解:怎么读、什么意思、用法