nitrides
简明释义
英[ˈnaɪtraɪdz]美[ˈnaɪtraɪdz;ˈnɪtraɪdz]
n. [无化]氮化物(nitride 的复数)
英英释义
Nitrides are binary compounds of nitrogen with a more electropositive element, often characterized by their hardness and thermal stability. | 氮化物是氮与更具电正性的元素形成的二元化合物,通常以其硬度和热稳定性为特征。 |
单词用法
氮化硅 | |
氮化硼;一氮化硼 |
同义词
氮化物 | 氮化硅被用于陶瓷和电子产品中。 | ||
氮化过程 | 氮化过程增强了材料的硬度。 |
反义词
氧化物 | Metal oxides are commonly used as catalysts in chemical reactions. | 金属氧化物通常用作化学反应中的催化剂。 | |
碳化物 | Carbides are often utilized in cutting tools due to their hardness. | 碳化物因其硬度常用于切削工具。 |
例句
1.A small amount of aminoacid and other typology amine, except nitrides and azides, will not interfere with the reaction when their concentrations are low.
除亚硝酸盐和叠氮化合物外,其它胺类和氨基酸在较低浓度时不干扰此反应。
2.The methods for determining total nitrogen and basic nitrides content in diesel oil are described.
介绍了测定柴油中总氮及碱性氮含量的各种方法。
3.Therefore, control of the nitrides plays a significant role in the safe employment of the petroleum products.
因此为了保证产品的安全使用,控制产品中氮的含量非常重要。
4.The raw materials: break through the traditional boundaries of using clay as raw materials, fine ceramics' raw materials are generally oxides, nitrides, silicides, borides, carbides etc.
精细陶瓷一般以氧化物、氮化物、硅化物、硼化物、碳化物等为主要原料。
5.In this thesis, a first principles study of the electronic properties and mechanical properties of transition metals, transition metal carbides and nitrides is presented.
过渡金属碳化物和氮化物具有高硬度、高熔点、耐磨损和耐腐蚀的优良特性,被广泛应用于切削刀具和用作硬质涂层。
6.A synthesis method is propsed to prepare metal nitrides by direct nitridation of metals in static nitrogen atmosphere at high temperature.
提出了在高温和静态氮气氛下利用金属与氮气直接反应制取金属氮化物的合成方法。
7.Transition metal nitrides and carbides were a class of interstitial compounds with special structure characteristics which decided distinctive catalytic effects.
过渡金属氮化物与碳化物是一类间充性化合物,其结构特点决定其在催化反应上具有独特的催化效果。
8.In the field of optics, nitrides (氮化物) are used for anti-reflective coatings.
在光学领域,氮化物用于抗反射涂层。
9.Researchers are studying the properties of nitrides (氮化物) for potential applications in electronics.
研究人员正在研究氮化物的特性,以寻找在电子领域的潜在应用。
10.The coating on these tools is made from nitrides (氮化物) to improve hardness and wear resistance.
这些工具上的涂层由氮化物制成,以提高硬度和耐磨性。
11.The semiconductor industry often uses nitrides (氮化物) to create high-performance materials.
半导体行业常常使用氮化物来制造高性能材料。
12.The synthesis of nitrides (氮化物) can be achieved through various chemical methods.
可以通过多种化学方法合成氮化物。
作文
Nitrides are a fascinating class of compounds that have garnered significant attention in the fields of materials science and engineering. These compounds are formed by the combination of nitrogen with a more electropositive element, resulting in a range of materials with unique properties. The study of nitrides (氮化物) is crucial for advancing technology in various applications, including electronics, optics, and even aerospace engineering.One of the most notable characteristics of nitrides (氮化物) is their exceptional hardness and thermal stability. For instance, boron nitride (BN) is known for its high thermal conductivity and electrical insulation properties, making it an ideal candidate for use in high-performance electronic devices. Similarly, titanium nitride (TiN) exhibits remarkable hardness and is often used as a coating material to enhance the durability of cutting tools and other industrial equipment.The semiconductor industry has also benefited from the unique properties of nitrides (氮化物). Gallium nitride (GaN), for example, is a wide bandgap semiconductor that has revolutionized the production of high-efficiency light-emitting diodes (LEDs) and laser diodes. Its ability to operate at high temperatures and voltages makes it suitable for power electronics, which are essential for renewable energy systems and electric vehicles. As the demand for energy-efficient technologies increases, the role of nitrides (氮化物) in semiconductor applications will likely expand further.In addition to their applications in electronics, nitrides (氮化物) also play a significant role in the development of advanced materials. Researchers are exploring the use of nitrides (氮化物) in composite materials to improve mechanical properties and resistance to wear and corrosion. For example, adding nitrides (氮化物) to polymer matrices can enhance toughness and thermal stability, leading to the creation of lightweight, durable materials suitable for automotive and aerospace applications.Moreover, the unique optical properties of certain nitrides (氮化物) make them valuable in photonics. Materials like aluminum nitride (AlN) are being investigated for their potential use in UV light emitters and detectors, which could have implications for environmental monitoring and medical diagnostics. The ability to manipulate light at the nanoscale using nitrides (氮化物) opens up new avenues for research and innovation in optical technologies.Despite their promising applications, the synthesis and processing of nitrides (氮化物) can be challenging. The need for high temperatures and controlled environments during their fabrication requires advanced techniques and equipment. However, ongoing research aims to develop more efficient methods for producing nitrides (氮化物), which could lower costs and make these materials more accessible for widespread use.In conclusion, nitrides (氮化物) represent a vital area of study within materials science, offering numerous benefits across various industries. Their unique properties enable innovations in electronics, advanced materials, and photonics, contributing to the development of next-generation technologies. As research continues to uncover new applications and improve synthesis methods, the significance of nitrides (氮化物) in modern science and engineering will undoubtedly grow, paving the way for exciting advancements in the future.
氮化物是一类引人注目的化合物,在材料科学和工程领域引起了广泛关注。这些化合物是由氮与更电正的元素结合而形成的,导致一系列具有独特性质的材料。研究氮化物(氮化物)对于推进电子、光学甚至航空航天工程等各个应用领域的技术至关重要。氮化物(氮化物)最显著的特征之一是其卓越的硬度和热稳定性。例如,氮化硼(BN)以其高热导率和电绝缘特性而闻名,使其成为高性能电子设备的理想候选材料。同样,氮化钛(TiN)表现出显著的硬度,通常用作涂层材料,以增强切削工具和其他工业设备的耐用性。半导体行业也从氮化物(氮化物)的独特性质中受益。例如,氮化镓(GaN)是一种宽带隙半导体,已彻底改变了高效发光二极管(LED)和激光二极管的生产。它能够在高温和高电压下工作,使其适用于电力电子,这对可再生能源系统和电动汽车至关重要。随着对节能技术需求的增加,氮化物(氮化物)在半导体应用中的作用可能会进一步扩大。除了在电子产品中的应用外,氮化物(氮化物)在先进材料开发中也发挥着重要作用。研究人员正在探索将氮化物(氮化物)用于复合材料,以改善机械性能和抗磨损、抗腐蚀能力。例如,将氮化物(氮化物)添加到聚合物基体中可以增强韧性和热稳定性,从而创造出适合汽车和航空航天应用的轻质耐用材料。此外,某些氮化物(氮化物)的独特光学特性使其在光子学中具有价值。氮化铝(AlN)等材料正在被研究其在紫外光发射器和探测器中的潜在应用,这可能对环境监测和医疗诊断产生影响。利用氮化物(氮化物)在纳米尺度上操控光线的能力为光学技术的研究和创新开辟了新的途径。尽管其应用前景广阔,但氮化物(氮化物)的合成和加工可能具有挑战性。在其制造过程中需要高温和受控环境,这需要先进的技术和设备。然而,正在进行的研究旨在开发更高效的氮化物(氮化物)生产方法,这可能降低成本并使这些材料在广泛使用中更具可及性。总之,氮化物(氮化物)代表了材料科学中的一个重要研究领域,为各个行业提供了众多好处。它们的独特性质使得在电子、高级材料和光子学领域的创新成为可能,为下一代技术的发展做出了贡献。随着研究继续揭示新应用并改善合成方法,氮化物(氮化物)在现代科学和工程中的重要性无疑将不断增长,为未来的激动人心的进展铺平道路。