abscissas
简明释义
n. [数][天] 横坐标(横线)
英英释义
单词用法
x坐标和横坐标 | |
绘制带有其横坐标的点 | |
这些点的横坐标 | |
在图表上找到横坐标 |
同义词
反义词
纵坐标 | In a Cartesian coordinate system, the position of a point is defined by its abscissas and ordinates. | 在笛卡尔坐标系中,点的位置由其横坐标和纵坐标定义。 |
例句
1.The optimum knots ordinate formula in the least square sense is derived by computing coefficient matrix and curve vertexes under the specified subsection knots abscissas conditions.
在给定分段节点横坐标的条件下,通过确定系数矩阵和反求曲线顶点,基于最小二乘法推导出最优节点的纵坐标公式。
2.The optimum knots ordinate formula in the least square sense is derived by computing coefficient matrix and curve vertexes under the specified subsection knots abscissas conditions.
在给定分段节点横坐标的条件下,通过确定系数矩阵和反求曲线顶点,基于最小二乘法推导出最优节点的纵坐标公式。
3.In statistics, we often analyze the abscissas of data points to understand trends, where abscissas means 横坐标.
在统计学中,我们经常分析数据点的abscissas以了解趋势,其中abscissas意为横坐标。
4.In a Cartesian coordinate system, the horizontal values are known as abscissas, which means 横坐标.
在笛卡尔坐标系中,水平值被称为abscissas,意思是横坐标。
5.To plot the points on a graph, you need to identify their abscissas and ordinates, where abscissas refers to 横坐标.
要在图表上绘制点,您需要识别它们的abscissas和纵坐标,其中abscissas指的是横坐标。
6.The formula for calculating the distance between two points involves their abscissas and ordinates.
计算两个点之间距离的公式涉及它们的abscissas和纵坐标。
7.When graphing a function, the abscissas represent the input values of the function.
在绘制函数图形时,abscissas代表函数的输入值。
作文
In the world of mathematics, particularly in coordinate geometry, understanding the concept of abscissas is essential for graphing and interpreting functions. The term abscissas refers to the x-coordinates of points in a two-dimensional Cartesian coordinate system. Each point on a graph can be represented by an ordered pair (x, y), where 'x' represents the abscissa and 'y' represents the ordinate. This relationship is fundamental as it helps us visualize and analyze mathematical relationships. For example, when we plot the equation of a line, the abscissas help determine where the line intersects the x-axis, which is crucial for understanding the behavior of the function.To illustrate the importance of abscissas, consider a simple linear equation such as y = 2x + 1. To graph this equation, we need to find various points by substituting different values of x, which are the abscissas. If we choose x = 0, we get y = 1, resulting in the point (0, 1). If we choose x = 1, then y = 3, giving us the point (1, 3). By plotting these points on a graph and connecting them, we can visualize the line represented by the equation. Each point's abscissa plays a vital role in determining the position of that point on the x-axis.The significance of abscissas extends beyond simple graphs; they are also crucial in more complex mathematical concepts such as calculus and statistics. In calculus, for instance, the derivative of a function at a certain point involves understanding how the abscissas change with respect to the ordinates. This relationship is used to find slopes of tangent lines, which are foundational in analyzing the behavior of curves.In statistics, abscissas can represent values of independent variables in scatter plots, where we analyze the correlation between two variables. Understanding how different abscissas relate to their corresponding ordinates can help us make predictions and understand trends within data sets. For instance, if we are studying the relationship between hours studied and exam scores, the abscissas would represent the number of hours, while the ordinates would represent the scores. By plotting these points, we can visualize any potential correlation and better understand the data.Moreover, the concept of abscissas is not limited to two dimensions. In higher dimensions, such as three-dimensional space, we still use the concept of abscissas to refer to the x-coordinate, while the y-coordinate and z-coordinate represent the other axes. Understanding how these coordinates interact is crucial in fields such as physics and engineering, where spatial relationships are analyzed.In conclusion, the term abscissas is a fundamental concept in mathematics that refers to the x-coordinates in a Cartesian coordinate system. Whether in simple graphing tasks or complex analyses in calculus and statistics, abscissas play a crucial role in understanding relationships between variables. Mastering the concept of abscissas allows students and professionals alike to effectively interpret and manipulate mathematical data, leading to deeper insights and more informed decisions.
在数学的世界里,特别是在坐标几何中,理解abscissas的概念对于图形绘制和函数解释至关重要。术语abscissas指的是二维笛卡尔坐标系中点的x坐标。图上的每个点都可以用有序对(x, y)表示,其中'x'代表abscissa,'y'代表纵坐标。这种关系是基础,因为它帮助我们可视化和分析数学关系。例如,当我们绘制一条直线的方程时,abscissas帮助确定直线与x轴的交点,这对于理解函数的行为至关重要。为了说明abscissas的重要性,考虑一个简单的线性方程,例如y = 2x + 1。要绘制这个方程,我们需要通过替换不同的x值来找到各种点,这些x值就是abscissas。如果我们选择x = 0,我们得到y = 1,从而得出点(0, 1)。如果我们选择x = 1,那么y = 3,得到点(1, 3)。通过在图上绘制这些点并连接它们,我们可以可视化方程所表示的直线。每个点的abscissa在确定该点在x轴上的位置时发挥着至关重要的作用。abscissas的重要性不仅限于简单的图形;它们在微积分和统计等更复杂的数学概念中也至关重要。例如,在微积分中,某个点的函数导数涉及理解abscissas如何相对于ordinates变化。这种关系用于找到切线的斜率,这是分析曲线行为的基础。在统计学中,abscissas可以表示散点图中自变量的值,我们分析两个变量之间的相关性。理解不同abscissas与其对应的ordinates之间的关系可以帮助我们做出预测并理解数据集中的趋势。例如,如果我们研究学习时间与考试成绩之间的关系,abscissas将代表学习的小时数,而ordinates将代表分数。通过绘制这些点,我们可以可视化潜在的相关性,更好地理解数据。此外,abscissas的概念并不限于二维。在更高维度,例如三维空间中,我们仍然使用abscissas的概念来指代x坐标,而y坐标和z坐标则代表其他轴。理解这些坐标之间的相互作用在物理学和工程等领域至关重要,在这些领域中,分析空间关系。总之,术语abscissas是数学中的一个基本概念,指的是笛卡尔坐标系中的x坐标。无论是在简单的绘图任务中还是在微积分和统计中的复杂分析中,abscissas在理解变量之间的关系中发挥着至关重要的作用。掌握abscissas的概念使学生和专业人士能够有效地解释和处理数学数据,从而获得更深入的见解和更明智的决策。