precalculus
简明释义
英[/ˌpriːˈkæl.kjʊ.ləs/]美[/ˌpriːˈkæl.kjʊ.ləs/]
adj. 学习微积分前必修的
n. 学习微积分前必修的课程
英英释义
单词用法
同义词
反义词
微积分 | I am currently studying calculus to prepare for my advanced math courses. | 我目前正在学习微积分,以为我的高级数学课程做准备。 | |
后微积分 | After completing precalculus, I felt ready to tackle calculus. | 完成预备微积分后,我感觉准备好迎接微积分的挑战。 |
例句
1.Miami - On the first day of her senior year at North Miami Beach senior High School, Naomi Baptiste expected to be greeted by a teacher when she walked into her precalculus class.
在迈阿密——娜米。巴提斯特去南迈阿密海滨高中上学的第一天,走进微积分准备课程的课堂时,她以为她会见到一名教师。
2.Miami - On the first day of her senior year at North Miami Beach senior High School, Naomi Baptiste expected to be greeted by a teacher when she walked into her precalculus class.
在迈阿密——娜米。巴提斯特去南迈阿密海滨高中上学的第一天,走进微积分准备课程的课堂时,她以为她会见到一名教师。
3.Many students take precalculus 预备微积分 as a prerequisite for calculus courses.
许多学生将预备微积分作为微积分课程的先修课程。
4.The precalculus 预备微积分 class covers topics such as trigonometry and logarithms.
预备微积分课程涵盖了三角学和对数等主题。
5.Students often struggle with the concepts taught in precalculus 预备微积分 if they haven't mastered algebra.
如果学生没有掌握代数,他们通常会在预备微积分中遇到困难。
6.Understanding functions is crucial in precalculus 预备微积分 to prepare for higher-level math.
理解函数在预备微积分中至关重要,以为更高层次的数学做好准备。
7.I need to review my notes from precalculus 预备微积分 before the final exam.
我需要在期末考试之前复习一下预备微积分的笔记。
作文
The journey of understanding mathematics can often feel overwhelming, especially when faced with subjects that lay the groundwork for advanced studies. One such subject is precalculus, which serves as a bridge between algebra and calculus. It encompasses a variety of mathematical concepts that are essential for students to grasp before embarking on the more complex world of calculus. The term precalculus refers to the mathematical skills and knowledge needed to prepare students for calculus, including functions, trigonometry, and analytical geometry.In high school, many students encounter precalculus as a prerequisite course designed to equip them with the tools necessary for success in calculus. This subject not only reinforces algebraic skills but also introduces new concepts that are vital for understanding limits and derivatives later on. For instance, students learn about different types of functions, such as polynomial, rational, exponential, and logarithmic functions. Each of these functions has unique properties and applications that are crucial for solving real-world problems.One of the key components of precalculus is trigonometry, which deals with the relationships between the angles and sides of triangles. Mastering trigonometric functions like sine, cosine, and tangent is essential, as these concepts frequently appear in calculus, particularly in topics involving periodic functions and wave phenomena. Moreover, the unit circle—a fundamental concept in trigonometry—is introduced in precalculus to help students understand how angles correspond to coordinates on a plane.Analytical geometry is another critical aspect of precalculus. This area of study combines algebra and geometry to analyze geometric shapes using algebraic equations. Students learn to graph lines, parabolas, circles, and other conic sections, providing them with a visual understanding of mathematical concepts. This skill becomes particularly useful in calculus, where graphical interpretation plays a significant role in understanding limits and continuity.Additionally, precalculus emphasizes problem-solving strategies and critical thinking skills. Students are encouraged to approach mathematical challenges systematically, breaking down complex problems into manageable parts. This analytical mindset is invaluable not just in mathematics but in various fields such as engineering, physics, and economics, where quantitative reasoning is paramount.In conclusion, precalculus is an indispensable part of a student’s mathematical education. It lays the foundation for calculus by covering essential topics such as functions, trigonometry, and analytical geometry. By mastering these concepts, students are better prepared to tackle the challenges of calculus and beyond. Understanding precalculus not only enhances mathematical proficiency but also fosters critical thinking and problem-solving skills that are applicable in many aspects of life. Therefore, investing time and effort into learning precalculus can significantly benefit students in their academic and professional endeavors.
理解数学的旅程常常让人感到不知所措,尤其是当面对那些为高级学习奠定基础的科目时。其中一个这样的科目是预备微积分,它充当了代数和微积分之间的桥梁。它包含多种数学概念,这些概念对于学生在进入更复杂的微积分世界之前至关重要。术语预备微积分指的是为学生准备微积分所需的数学技能和知识,包括函数、三角学和解析几何。在高中,许多学生将预备微积分作为一门先修课程,旨在为他们提供成功学习微积分所需的工具。这门课程不仅强化了代数技能,还引入了理解极限和导数所必需的新概念。例如,学生们学习不同类型的函数,如多项式函数、有理函数、指数函数和对数函数。这些函数各自具有独特的性质和应用,对于解决现实问题至关重要。预备微积分的一个关键组成部分是三角学,它处理三角形的角和边之间的关系。掌握正弦、余弦和正切等三角函数是必要的,因为这些概念在微积分中经常出现,特别是在涉及周期性函数和波动现象的主题中。此外,单位圆——三角学中的基本概念——在预备微积分中被引入,以帮助学生理解角度与平面上坐标之间的对应关系。解析几何是预备微积分的另一个关键方面。该研究领域结合了代数和几何,通过代数方程分析几何图形。学生学习绘制直线、抛物线、圆和其他圆锥曲线,从而为他们提供对数学概念的视觉理解。这项技能在微积分中尤为有用,因为图形解释在理解极限和连续性方面发挥着重要作用。此外,预备微积分强调解决问题的策略和批判性思维技能。鼓励学生系统地处理数学挑战,将复杂问题分解为可管理的部分。这种分析思维方式不仅在数学中无价,而且在工程、物理和经济等多个领域中也是至关重要的,在这些领域中,定量推理是至关重要的。总之,预备微积分是学生数学教育中不可或缺的一部分。它通过涵盖函数、三角学和解析几何等基本主题,为微积分奠定了基础。通过掌握这些概念,学生能够更好地应对微积分及其后续课程的挑战。理解预备微积分不仅提高了数学能力,而且培养了适用于生活多个方面的批判性思维和解决问题的技能。因此,投入时间和精力学习预备微积分可以显著有益于学生的学术和职业发展。