glass transition temperature
简明释义
玻璃化温度
英英释义
例句
1.Researchers are studying how additives can lower the glass transition temperature of certain resins.
研究人员正在研究添加剂如何降低某些树脂的玻璃转变温度。
2.When designing packaging materials, it is essential to consider the glass transition temperature to ensure durability.
在设计包装材料时,考虑玻璃转变温度以确保耐用性是必不可少的。
3.For optimal performance, the glass transition temperature should be lower than the service temperature of the material.
为了获得最佳性能,玻璃转变温度应低于材料的使用温度。
4.The glass transition temperature of this polymer is critical for its application in high-temperature environments.
这种聚合物的玻璃转变温度对于其在高温环境中的应用至关重要。
5.The glass transition temperature can affect the mechanical properties of plastics during processing.
在加工过程中,玻璃转变温度会影响塑料的机械性能。
作文
The concept of glass transition temperature is crucial in the field of materials science, particularly when discussing polymers and their behaviors under varying temperature conditions. The glass transition temperature (often abbreviated as Tg) refers to the temperature range at which a polymer transitions from a hard and relatively brittle state into a more rubbery or viscous state. This transformation is not a phase change like melting; instead, it represents a change in the physical properties of the material. Understanding this temperature is vital for engineers and scientists who work with plastics and other polymer-based materials, as it influences the material's performance in practical applications.When a polymer is below its glass transition temperature, it behaves like a glassy solid. In this state, the molecular chains are rigid and unable to move freely, resulting in a material that is hard but also brittle. This brittleness can lead to cracking or breaking under stress. For example, many everyday items, such as plastic containers or toys, can become fragile and break easily when exposed to low temperatures, especially if they are made from polymers that have a low glass transition temperature.As the temperature rises and approaches the glass transition temperature, the molecular mobility increases. Chains within the polymer begin to gain energy and can move past one another more easily. This increased flexibility results in a softer material that can absorb impacts better than its glassy counterpart. For instance, a toy made from a polymer with a high Tg can withstand rough handling without breaking, while a similar item made from a polymer with a low Tg might shatter when dropped.The glass transition temperature is not a fixed point but rather a range. Factors such as the chemical structure of the polymer, the presence of additives, and the rate of heating or cooling can all influence where this transition occurs. For engineers, knowing the Tg of a material is essential for selecting the right polymer for specific applications. If a material will be used in environments where it may experience wide temperature fluctuations, understanding the glass transition temperature helps predict how the material will behave and ensures safety and functionality.In addition to its importance in engineering, the glass transition temperature has implications in various fields such as food science, electronics, and pharmaceuticals. For example, in food packaging, polymers must maintain their integrity and barrier properties at different temperatures. Similarly, in electronics, materials used in circuit boards must remain stable at elevated temperatures to prevent failure.Research into the glass transition temperature continues to evolve, with scientists exploring new ways to modify polymers to achieve desirable thermal properties. Innovations in material science aim to develop polymers with tailored Tg values for specific applications, enhancing performance and durability. Overall, the glass transition temperature is a fundamental concept that underpins much of modern material science, influencing both theoretical research and practical applications in our daily lives.
“玻璃转变温度”的概念在材料科学领域中至关重要,特别是在讨论聚合物及其在不同温度条件下的行为时。“玻璃转变温度”(通常缩写为Tg)指的是聚合物从坚硬且相对脆弱的状态转变为更有弹性或粘性的状态的温度范围。这种转变不是像熔化那样的相变;而是代表了材料物理性质的变化。理解这个温度对于从事塑料和其他聚合物基材料工作的工程师和科学家至关重要,因为它会影响材料在实际应用中的性能。当聚合物低于其“玻璃转变温度”时,它表现得像一种玻璃固体。在这种状态下,分子链是刚性的,无法自由移动,导致材料坚硬但也脆弱。这种脆弱性可能导致在应力下开裂或破裂。例如,许多日常物品,如塑料容器或玩具,在低温下可能变得脆弱,并且容易破裂,尤其是如果它们由具有低“玻璃转变温度”的聚合物制成。随着温度升高并接近“玻璃转变温度”,分子的流动性增加。聚合物中的链条开始获得能量,可以更容易地相互移动。这种灵活性的增加导致材料变软,可以比其玻璃态的对应物更好地吸收冲击。例如,使用高Tg聚合物制造的玩具可以承受粗暴的处理而不会破裂,而类似的由低Tg聚合物制成的物品在掉落时可能会破碎。“玻璃转变温度”不是一个固定点,而是一个范围。聚合物的化学结构、添加剂的存在以及加热或冷却的速率等因素都可以影响这一转变发生的位置。对于工程师而言,了解某种材料的Tg对于选择特定应用所需的正确聚合物至关重要。如果材料将在可能经历温度波动的环境中使用,理解“玻璃转变温度”有助于预测材料的行为,确保安全和功能。除了在工程中的重要性外,“玻璃转变温度”在食品科学、电子学和制药等各个领域也具有重要意义。例如,在食品包装中,聚合物必须在不同温度下保持其完整性和屏障性能。同样,在电子产品中,电路板中使用的材料必须在高温下保持稳定,以防止故障。对“玻璃转变温度”的研究仍在不断发展,科学家们正在探索修改聚合物以实现理想热性能的新方法。材料科学中的创新旨在开发具有特定应用所需的定制Tg值的聚合物,以提高性能和耐用性。总体而言,“玻璃转变温度”是一个基本概念,支撑着现代材料科学的大部分内容,影响着我们日常生活中的理论研究和实际应用。
相关单词