intergranular

简明释义

[ˌɪntəˈɡrænjʊlə(r)][ɪntərˈɡrænjələr]

adj. 颗粒间的,晶粒间的

英英释义

Relating to or situated between grains, especially in materials like metals or ceramics.

与晶粒之间有关或位于晶粒之间,尤其是在金属或陶瓷等材料中。

单词用法

intergranular corrosion

晶间腐蚀;粒间腐蚀

intergranular fracture

n. 晶粒间破裂

同义词

intercrystalline

晶间的

Intercrystalline porosity can significantly affect the mechanical properties of materials.

晶间孔隙度会显著影响材料的机械性能。

between grains

颗粒之间的

The defects located between grains can lead to reduced strength in metals.

位于颗粒之间的缺陷可能导致金属强度降低。

反义词

intragranular

粒内的

Intragranular diffusion occurs within the grains of a material.

粒内扩散发生在材料的晶粒内部。

transgranular

跨粒的

Transgranular fracture can lead to different mechanical properties in materials.

跨粒断裂可能导致材料的不同机械性能。

例句

1.In the intergranular spaces of rocks, however, fluid must flow around and between grains in a tortuous path; this winding path causes a resistance to flow.

然而,在粒间孔发育的岩石中,流体必须在颗粒周围的曲折通道中流动;而这种曲折通道会对其流动产生阻力。

2.The microstructure of the intergranular amorphous phase is different with that of the complete amorphous.

晶间非晶相的微结构不同于完全非晶,并随淬速的变化而改变。

3.The pore types include primary intergranular pores and secondary pores, with the latter being mainly of intergranular dissolved pores.

孔隙类型包括原生粒间孔和次生孔隙,后者以粒间溶孔为主。

4.The corrosion of poor Cu area is the root of intergranular corrosion.

贫铜区受到腐蚀是晶间腐蚀的根源。

5.The effect of holding time on intergranular phase and mechanical property of GPS silicon nitride ceramics was studied.

研究了保温时间对气压烧结(GPS)氮化硅陶瓷晶界相及力学性能的影响。

6.The pore space consists of intergranular pore, intergranular dissolved pore, intragranular dissolved pore, intercrystalline pore, moldic pore and fracture.

主要的孔隙空间为粒间孔、粒间溶孔、粒内溶孔、晶间孔、铸模孔和裂缝;

7.The study focused on the intergranular 晶粒间的 fracture mechanisms in ceramics.

该研究集中于陶瓷中的晶粒间的断裂机制。

8.The failure of the metal was attributed to intergranular 晶粒间的 corrosion.

金属的失效归因于晶粒间的腐蚀。

9.This alloy exhibits excellent resistance to intergranular 晶粒间的 cracking.

这种合金表现出对晶粒间的开裂的优良抗性。

10.The intergranular 晶粒间的 phase boundaries were analyzed using electron microscopy.

使用电子显微镜分析了晶粒间的相界面。

11.Heat treatment can reduce intergranular 晶粒间的 stresses in the material.

热处理可以减少材料中的晶粒间的应力。

作文

The study of materials science often brings us to the fascinating realm of microstructures, where we delve into the intricate details that define the properties of various substances. One crucial term that frequently arises in this field is intergranular, which refers to the regions or phenomena occurring between grains in a polycrystalline material. Understanding intergranular characteristics is essential for engineers and scientists, as these features can significantly influence the overall performance and durability of materials.In metals, for instance, the intergranular boundaries play a vital role in determining strength and ductility. When a metal is subjected to stress, the behavior of the grains at these boundaries can dictate whether the material will deform or fracture. If the intergranular cohesion is weak, it may lead to premature failure, a phenomenon known as intergranular fracture. This type of failure is particularly concerning in structural applications, where reliability is paramount.Moreover, the presence of impurities or second-phase particles at the intergranular regions can alter the mechanical properties of materials. For example, during the heat treatment of steel, the distribution of carbon atoms can create intergranular carbides, which enhance hardness but may also make the material more brittle if not properly managed. Thus, controlling the intergranular composition during processing is critical to achieving the desired balance between strength and toughness.In ceramics, intergranular phases can also affect thermal and electrical conductivity. The intergranular regions may contain glassy phases that impede the flow of electrons or phonons, thereby influencing the overall performance of the ceramic material. Engineers must consider these intergranular effects when designing components for high-temperature applications, such as turbine blades or aerospace structures.Another significant aspect of intergranular phenomena is seen in the context of corrosion resistance. In certain alloys, the intergranular attack can occur when corrosive agents penetrate the grain boundaries, leading to localized degradation. This is particularly problematic in stainless steels, where chromium depletion at the intergranular boundaries can result in susceptibility to pitting and stress corrosion cracking. To mitigate these risks, alloying elements and heat treatments are employed to enhance intergranular stability and protect against corrosion.In summary, the term intergranular encapsulates a wide range of critical phenomena that occur at the interfaces between grains in materials. From influencing mechanical properties to affecting corrosion resistance, understanding intergranular characteristics is fundamental to materials science and engineering. As we continue to explore new materials and improve existing ones, the insights gained from studying intergranular behavior will be invaluable in developing stronger, more durable, and more efficient materials for future applications.

材料科学的研究常常将我们带入微观结构的迷人领域,在这里我们深入探讨定义各种物质特性的复杂细节。一个在这个领域中经常出现的重要术语是intergranular,它指的是多晶材料中晶粒之间发生的区域或现象。理解intergranular特性对工程师和科学家至关重要,因为这些特征会显著影响材料的整体性能和耐用性。例如,在金属中,intergranular边界在决定强度和延展性方面起着至关重要的作用。当金属受到应力时,这些边界处晶粒的行为可以决定材料是变形还是断裂。如果intergranular的结合力较弱,可能会导致提前失效,这种现象被称为intergranular断裂。这种类型的失效在结构应用中尤为令人担忧,因为可靠性至关重要。此外,杂质或第二相粒子在intergranular区域的存在可以改变材料的机械性能。例如,在钢的热处理过程中,碳原子的分布可能会形成intergranular碳化物,从而增强硬度,但如果管理不当,也可能使材料变得更加脆弱。因此,在加工过程中控制intergranular成分对实现强度和韧性之间所需的平衡至关重要。在陶瓷中,intergranular相也会影响热导率和电导率。intergranular区域可能含有阻碍电子或声子的流动的玻璃相,从而影响陶瓷材料的整体性能。工程师在设计高温应用的组件时,如涡轮叶片或航空航天结构,必须考虑这些intergranular效应。intergranular现象的另一个重要方面是在腐蚀抗性方面。在某些合金中,当腐蚀介质渗透到晶粒边界时,可能会发生intergranular攻击,导致局部降解。这在不锈钢中尤其成问题,因为在intergranular边界处铬的耗竭可能导致点蚀和应力腐蚀开裂的敏感性。为了减轻这些风险,采用合金元素和热处理来增强intergranular稳定性并防止腐蚀。总之,术语intergranular概括了发生在材料晶粒之间界面的一系列关键现象。从影响机械性能到影响腐蚀抗性,理解intergranular特性是材料科学和工程的基础。随着我们继续探索新材料并改进现有材料,研究intergranular行为所获得的见解在开发更强、更耐用和更高效的未来应用材料方面将是无价的。