arsenide
简明释义
n. [无化] 砷化物
英英释义
A binary compound of arsenic with a more electropositive element. | 与更具电正性的元素形成的砷的二元化合物。 |
单词用法
砷化镓 |
同义词
反义词
硅化物 | 硅化物通常用于半导体应用。 | ||
磷化物 | 磷化物可以用作电子设备的材料。 |
例句
1.Some common intrinsic semiconductors are single crystals of silicon, germanium, and gallium arsenide.
常用的本质半导体是硅、锗以及砷化镓等的单晶。
2.Gallium arsenide, silicon, and germanium are all examples of semiconductors, the type of material used in virtually all modern electronics.
镓砷化物,硅,和锗元素都属于半导体,而如今半导体在所有的现代电子元件中都会用到。
3.The gold enrichment is closely connected with metal sulfide (or arsenide). And arsenopyrite is the main gold-bearing mineral.
金的富集与金属硫(砷)化物关系密切,毒砂是其主要载金矿物。
4.Each panel contains small lenses that concentrate sunlight by 400 times onto strips containing gallium arsenide photovoltaic cells.
每块板上包含的把可以太阳光浓缩400倍的小晶体,主要成分是砷化镓光电池。
5.The material is a semiconductor called gallium manganese arsenide.
这种材料是一种叫做镓锰砷化物的东东。
6.Gallium arsenide switches ten times faster than silicon all of a sudden, I've got a clock speed ten times faster with no change in design.
砷化镓启动的速度是硅的10倍,突然,我得到了10倍快的时钟速度,但是设计没有发生任何改变。
7.They wanted to build a waveguide, a structure designed to send light in a particular direction, by drilling carefully spaced holes in a gallium arsenide crystal.
他们只是想通过在砷化镓晶体上钻一些有着细心安排间距的小孔来制造波导(一种能令光传播到特定方向的结构)。
8.Researchers are exploring the properties of arsenide compounds for use in solar cells.
研究人员正在探索砷化物化合物在太阳能电池中的应用特性。
9.High electron mobility transistors (HEMTs) can be made from arsenide materials.
高电子迁移率晶体管(HEMTs)可以由砷化物材料制成。
10.The optical characteristics of indium arsenide make it suitable for infrared detectors.
铟砷化物的光学特性使其适合用于红外探测器。
11.The semiconductor industry often uses materials like gallium arsenide for high-speed electronics.
半导体行业经常使用像镓砷化物这样的材料用于高速电子设备。
12.The toxicity of arsenide compounds poses environmental challenges.
由于砷化物化合物的毒性,给环境带来了挑战。
作文
The study of materials in the field of chemistry and physics has led to the discovery of various compounds that play crucial roles in technology and industry. One such compound is arsenide, which refers to a binary compound formed between arsenic and another element, typically a metal. The significance of arsenide in modern applications cannot be overstated, especially in the realm of electronics and semiconductor technology. One of the most notable examples of arsenide is gallium arsenide (GaAs), which is widely used in the production of high-speed electronic devices, including transistors and diodes. Gallium arsenide possesses unique properties that make it superior to silicon in certain applications. For instance, it has a higher electron mobility, allowing for faster signal processing speeds. This characteristic is particularly valuable in the development of optoelectronic devices such as laser diodes and light-emitting diodes (LEDs). In addition to its electronic applications, arsenide compounds are also being researched for their potential use in solar cells. The efficiency of solar cells can be significantly enhanced by using materials like gallium arsenide, which can convert sunlight into electricity more effectively than traditional silicon-based solar cells. This innovation could lead to more sustainable energy solutions and contribute to the fight against climate change. However, the use of arsenide raises environmental and health concerns due to the toxicity of arsenic, which is a well-known poison. The production and disposal of arsenide-based materials must be managed carefully to prevent contamination and exposure. Researchers are actively exploring safer alternatives and methods to mitigate these risks while still harnessing the advantages of arsenide compounds. Moreover, the exploration of arsenide in nanotechnology is an exciting frontier. Nanostructures made from arsenide materials have shown promise in enhancing the performance of various devices at the nanoscale. These advancements could lead to breakthroughs in computing, telecommunications, and even healthcare. In conclusion, arsenide is a compound that embodies the intersection of chemistry, physics, and technology. Its applications in electronics, renewable energy, and nanotechnology highlight its importance in driving innovation. As we continue to explore the potential of arsenide and address the associated challenges, it is clear that this compound will play a significant role in shaping the future of technology and sustainability. Understanding and managing the implications of arsenide will be essential for harnessing its benefits while safeguarding public health and the environment.
材料科学的研究在化学和物理领域的进展导致了各种化合物的发现,这些化合物在技术和工业中发挥着至关重要的作用。其中一个这样的化合物是砷化物,指的是由砷和另一种元素(通常是金属)形成的二元化合物。砷化物在现代应用中的重要性不容小觑,特别是在电子和半导体技术领域。 最著名的砷化物例子之一是砷化镓(GaAs),它广泛用于高速电子设备的生产,包括晶体管和二极管。砷化镓砷化物具有独特的性质,使其在某些应用中优于硅。例如,它具有更高的电子迁移率,允许更快的信号处理速度。这一特性在激光二极管和发光二极管(LED)等光电设备的发展中尤为宝贵。 除了电子应用外,砷化物化合物还在研究其在太阳能电池中的潜在应用。通过使用像砷化镓这样的材料,可以显著提高太阳能电池的效率,这比传统的基于硅的太阳能电池更有效地将阳光转化为电能。这一创新可能会导致更可持续的能源解决方案,并为应对气候变化作出贡献。 然而,由于砷是一种众所周知的毒药,砷化物的使用引发了环境和健康问题。必须谨慎管理砷化物基材料的生产和处置,以防止污染和暴露。研究人员正在积极探索更安全的替代品和方法,以减轻这些风险,同时仍然利用砷化物化合物的优势。 此外,在纳米技术中对砷化物的探索是一个令人兴奋的前沿。由砷化物材料制成的纳米结构在提高各种设备在纳米尺度上的性能方面显示出希望。这些进展可能导致计算、通信甚至医疗保健领域的突破。 总之,砷化物是一个体现化学、物理和技术交汇的化合物。它在电子、可再生能源和纳米技术中的应用突显了它在推动创新方面的重要性。随着我们继续探索砷化物的潜力并解决相关挑战,显然这个化合物将在塑造技术和可持续发展的未来中发挥重要作用。理解和管理砷化物的影响对于利用其好处,同时保护公众健康和环境,将是至关重要的。