elastic modulus

简明释义

弹性模数

英英释义

The elastic modulus is a measure of the stiffness of a material, defined as the ratio of stress (force per unit area) to strain (deformation) in the linear elastic region of the material's stress-strain curve.

弹性模量是材料刚度的度量,定义为材料应力(单位面积上的力)与应变(形变)在材料应力-应变曲线的线性弹性区域中的比率。

例句

1.Different materials have different elastic moduli 弹性模量, which affects their performance in various applications.

不同材料具有不同的弹性模量 弹性模量,这会影响它们在各种应用中的性能。

2.In engineering, the elastic modulus 弹性模量 helps determine how much a material will deform under stress.

在工程中,弹性模量 弹性模量有助于确定材料在受力下会变形多少。

3.The elastic modulus 弹性模量 of concrete is critical for predicting its behavior under load.

混凝土的弹性模量 弹性模量对于预测其在负载下的行为至关重要。

4.The elastic modulus 弹性模量 of steel is much higher than that of rubber, making it more suitable for structural applications.

钢的弹性模量 弹性模量远高于橡胶,使其更适合用于结构应用。

5.When designing bridges, engineers must consider the elastic modulus 弹性模量 of the materials used to ensure safety.

在设计桥梁时,工程师必须考虑所用材料的弹性模量 弹性模量以确保安全。

作文

The concept of elastic modulus is fundamental in the field of materials science and engineering. It refers to a measure of a material's ability to deform elastically when a force is applied. Essentially, it quantifies how much a material will stretch or compress under a given load. The higher the elastic modulus, the stiffer the material, meaning it will not deform easily under stress. Conversely, a lower elastic modulus indicates that the material is more flexible and can undergo significant deformation without breaking. There are different types of elastic modulus, including Young's modulus, shear modulus, and bulk modulus, each describing different types of deformation. Young's modulus measures tensile or compressive stress, shear modulus measures the response to shear stress, and bulk modulus assesses volumetric changes under pressure. Understanding these properties is crucial for engineers when selecting materials for construction, manufacturing, and various applications in technology. For instance, when designing a bridge, engineers must consider the elastic modulus of the materials used to ensure they can withstand the loads and stresses imposed by traffic and environmental factors. If the selected materials have too low an elastic modulus, the bridge may sag or even fail under pressure. On the other hand, using overly rigid materials could lead to brittleness and cracking. Therefore, finding the right balance based on the elastic modulus is vital for structural integrity. Moreover, the elastic modulus also plays a significant role in the development of new materials, particularly in the fields of polymers and composites. Engineers and scientists often manipulate the elastic modulus through various processes, such as altering the composition of materials or changing their physical structure. For example, by adding fibers to a polymer matrix, one can increase its elastic modulus, making it more suitable for specific applications like automotive parts or aerospace components. In conclusion, the elastic modulus is a critical parameter in understanding how materials behave under stress. Its implications extend beyond theoretical calculations to practical applications in engineering and design. By comprehensively grasping the significance of the elastic modulus, professionals can make informed decisions that enhance safety, performance, and durability in various structures and products. As technology continues to advance, the importance of accurately measuring and applying the elastic modulus will only grow, paving the way for innovations in material science and engineering disciplines. In summary, the elastic modulus is not just a number; it represents the very essence of how materials interact with forces. A thorough understanding of this concept allows for better design, improved safety, and the potential for groundbreaking advancements in material technology.

弹性模量是材料科学和工程领域的一个基本概念。它指的是材料在施加力时弹性变形的能力的度量。本质上,它量化了在给定载荷下,材料将如何伸展或压缩。弹性模量越高,材料就越坚硬,这意味着它在应力下不会轻易变形。相反,较低的弹性模量表明材料更具柔韧性,可以在不破裂的情况下经历显著的变形。弹性模量有不同类型,包括杨氏模量、剪切模量和体积模量,每种类型描述不同的变形类型。杨氏模量测量拉伸或压缩应力,剪切模量测量对剪切应力的响应,而体积模量评估在压力下的体积变化。理解这些属性对于工程师在选择建筑、制造和各种技术应用的材料时至关重要。例如,在设计桥梁时,工程师必须考虑所用材料的弹性模量,以确保它们能够承受交通和环境因素施加的负荷和应力。如果所选材料的弹性模量过低,桥梁可能会因压力而下垂甚至失效。另一方面,使用过于刚性的材料可能导致脆性和开裂。因此,根据弹性模量找到合适的平衡对于结构的完整性至关重要。此外,弹性模量在新材料的发展中也发挥着重要作用,特别是在聚合物和复合材料领域。工程师和科学家通常通过各种工艺来操控弹性模量,例如改变材料的成分或物理结构。例如,通过向聚合物基体中添加纤维,可以增加其弹性模量,使其更适合特定应用,如汽车零部件或航空航天组件。总之,弹性模量是理解材料在应力下行为的关键参数。它的影响不仅限于理论计算,还扩展到工程和设计的实际应用。通过全面掌握弹性模量的重要性,专业人员可以做出明智的决策,从而在各种结构和产品中提高安全性、性能和耐久性。随着技术的不断进步,准确测量和应用弹性模量的重要性只会增加,为材料科学和工程学科的创新铺平道路。总之,弹性模量不仅仅是一个数字;它代表了材料与力相互作用的本质。对这一概念的透彻理解使得更好的设计、改善的安全性以及材料技术突破性进展的可能性成为可能。

相关单词

elastic

elastic详解:怎么读、什么意思、用法

modulus

modulus详解:怎么读、什么意思、用法