dimensional formula
简明释义
量纲公式
英英释义
例句
1.The dimensional formula 维度公式 of pressure is given by [M^1 L^-1 T^-2].
压力的维度公式 维度公式 为 [M^1 L^-1 T^-2]。
2.In engineering, understanding the dimensional formula 维度公式 helps in unit conversions.
在工程学中,理解维度公式 维度公式 有助于单位转换。
3.To derive the dimensional formula 维度公式 for energy, we start from work done.
为了推导能量的维度公式 维度公式,我们从所做的功开始。
4.The dimensional formula 维度公式 for velocity is [L^1 T^-1].
速度的维度公式 维度公式 为 [L^1 T^-1]。
5.In physics, the dimensional formula 维度公式 for force is expressed as [M^1 L^1 T^-2].
在物理学中,力的维度公式 维度公式 表示为 [M^1 L^1 T^-2]。
作文
The concept of a dimensional formula is fundamental in the study of physics and engineering. It provides a way to express physical quantities in terms of basic dimensions such as mass, length, time, and electric current. Understanding dimensional formulas allows scientists and engineers to analyze relationships between different physical quantities and to ensure that equations are dimensionally consistent. For example, consider the formula for force, which is expressed as F = ma, where F is force, m is mass, and a is acceleration. The dimensional formula for force can be derived by examining the dimensions of mass and acceleration. Mass has the dimension [M] (mass), while acceleration has the dimension [L][T]^-2 (length per time squared). Therefore, the dimensional formula for force is [M][L][T]^-2. This dimensional analysis is not just an academic exercise; it has practical applications in various fields. Engineers use dimensional formulas to check the validity of their designs, ensuring that all components fit together correctly under the laws of physics. For instance, if an engineer designs a bridge, they must consider the forces acting on it, including tension, compression, and weight. By using dimensional formulas, they can verify that the materials chosen will withstand these forces without failing.Moreover, dimensional formulas are crucial when converting units from one system to another. For instance, converting a measurement from the metric system to the imperial system requires an understanding of the dimensional formulas involved. Without this understanding, one could easily miscalculate and lead to errors in measurements and designs. In addition to practical applications, dimensional formulas also play a significant role in theoretical physics. They help researchers develop new theories and models by providing a framework for understanding how different physical quantities interact with one another. For example, in fluid dynamics, the dimensional formula for viscosity can be expressed in terms of mass, length, and time, allowing scientists to predict how fluids will behave under various conditions. Furthermore, dimensional formulas are useful in the field of chemistry. When dealing with chemical reactions, chemists often need to understand the relationships between different substances, their concentrations, and the rates at which they react. By employing dimensional formulas, chemists can derive rate laws and predict the outcomes of reactions, leading to more efficient processes in industrial applications. In conclusion, the dimensional formula is a powerful tool that transcends disciplines. It simplifies complex physical concepts and ensures consistency across various scientific fields. Whether in engineering, physics, or chemistry, the ability to utilize dimensional formulas is essential for problem-solving and innovation. As students and professionals continue to explore the intricacies of the natural world, mastering dimensional formulas will undoubtedly remain a cornerstone of scientific education and practice.
“维度公式”的概念在物理和工程学的研究中是基础性的。它提供了一种将物理量用基本维度(如质量、长度、时间和电流)表示的方法。理解“维度公式”使科学家和工程师能够分析不同物理量之间的关系,并确保方程在维度上是一致的。例如,考虑力的公式,它表示为F = ma,其中F是力,m是质量,a是加速度。通过检查质量和加速度的维度,可以推导出力的“维度公式”。质量的维度是[M](质量),而加速度的维度是[L][T]^-2(长度每时间平方)。因此,力的“维度公式”是[M][L][T]^-2。这种维度分析不仅仅是学术练习;它在各个领域都有实际应用。工程师使用“维度公式”来检查设计的有效性,确保所有组件在物理法则下正确结合。例如,如果一名工程师设计一座桥,他们必须考虑作用在其上的力,包括拉力、压力和重量。通过使用“维度公式”,他们可以验证所选择的材料是否能承受这些力而不发生故障。此外,“维度公式”在将单位从一个系统转换到另一个系统时至关重要。例如,将测量值从公制系统转换为英制系统需要理解涉及的“维度公式”。如果没有这种理解,人们很容易计算错误,从而导致测量和设计中的错误。除了实际应用,“维度公式”在理论物理中也起着重要作用。它们帮助研究人员开发新理论和模型,提供了理解不同物理量如何相互作用的框架。例如,在流体动力学中,粘度的“维度公式”可以用质量、长度和时间表示,使科学家能够预测流体在各种条件下的行为。此外,“维度公式”在化学领域也很有用。在处理化学反应时,化学家通常需要了解不同物质之间的关系、它们的浓度以及反应速率。通过使用“维度公式”,化学家可以推导出速率定律并预测反应的结果,从而在工业应用中实现更高效的过程。总之,“维度公式”是一种超越学科的强大工具。它简化了复杂的物理概念,并确保了各个科学领域的一致性。无论是在工程、物理还是化学,利用“维度公式”的能力对解决问题和创新至关重要。随着学生和专业人士继续探索自然世界的复杂性,掌握“维度公式”无疑将继续成为科学教育和实践的基石。
相关单词