isometrical
简明释义
英[ˌaɪsəˈmetrɪk(ə)l]美[ˌaɪsəˈmetrɪkl]
adj. 等大的;等容积的(等于 isometric)
英英释义
与相等的尺寸或测量相关或表示。 | |
Involving figures that have the same shape and size, but may differ in orientation. | 涉及具有相同形状和大小的图形,但可能在方向上有所不同。 |
单词用法
等距图 | |
等距投影 | |
等距分析 | |
等距变换 |
同义词
等距的 | Isometric drawings are used in technical illustrations to represent three-dimensional objects in two dimensions. | 等距图用于技术插图,以在二维中表示三维物体。 |
反义词
非等距的 | The non-isometric transformation altered the shape of the figure. | 非等距变换改变了图形的形状。 | |
非等同的 | In anisometric scaling, the dimensions are not uniformly scaled. | 在非等同缩放中,尺寸不是均匀缩放的。 |
例句
1.Then we prove the isometrical identity and inversion formula of the solution of the wave equation.
得到了波动方程的解的反演公式及等距等式,为再生核理论的应用提供了新的思路。
2.Then we prove the isometrical identity and inversion formula of the solution of the wave equation.
得到了波动方程的解的反演公式及等距等式,为再生核理论的应用提供了新的思路。
3.The architect designed the building using isometrical 等距的 projections to give a clear view of all sides.
建筑师使用isometrical 等距的 投影设计了这座建筑,以清晰展示所有侧面。
4.The engineering team applied isometrical 等距的 analysis to ensure the structure's stability.
工程团队应用isometrical 等距的 分析来确保结构的稳定性。
5.For the video game design, the developers chose an isometrical 等距的 perspective to enhance gameplay.
在视频游戏设计中,开发者选择了isometrical 等距的 视角以增强游戏体验。
6.In geometry, isometrical 等距的 transformations help maintain distances and angles in shapes.
在几何学中,isometrical 等距的 变换有助于保持形状中的距离和角度。
7.The artist used isometrical 等距的 techniques to create a three-dimensional effect on the canvas.
艺术家使用isometrical 等距的 技巧在画布上创造出三维效果。
作文
In the realm of mathematics and physics, the term isometrical refers to a property of figures or spaces that maintain their dimensions under transformations. This concept is crucial in various fields, including geometry, architecture, and even computer graphics. Understanding isometrical properties allows us to appreciate how shapes can be manipulated without altering their fundamental characteristics. For instance, when we think about a cube, it has specific lengths for its edges, and if we were to rotate or translate this cube in space, its isometrical nature ensures that the lengths of the edges remain unchanged.In geometry, isometrical transformations include actions like rotations, translations, and reflections. These transformations are significant because they help us understand symmetry and congruence. For example, when two triangles are said to be congruent, they have the same shape and size, which means they are isometrical to each other. This property is not just limited to two-dimensional shapes; it extends into three dimensions as well. When we analyze the isometrical properties of three-dimensional objects, we can apply similar principles to understand how these objects relate to one another in space.In architecture, the concept of isometrical design is vital. Architects often utilize isometrical drawings to represent three-dimensional structures on a two-dimensional plane. This technique allows them to convey depth and perspective while maintaining accurate proportions. By using isometrical projections, architects can create visual representations that help clients and stakeholders visualize the final product before construction begins. This practice not only aids in communication but also facilitates the identification of potential design flaws early in the process.Moreover, in the field of computer graphics, isometrical rendering techniques are employed to create visually appealing images and animations. Video games, for instance, often use isometrical viewpoints to give players a comprehensive view of the game world. This method allows for a unique perspective that enhances gameplay while preserving the isometrical integrity of the characters and environments. Through isometrical graphics, developers can create immersive experiences that engage players in a visually striking manner.The understanding of isometrical relationships also extends beyond technical disciplines. In art, artists may explore isometrical concepts to create works that challenge viewers' perceptions of space and form. By manipulating dimensions and perspectives, artists can evoke emotions and provoke thought, allowing audiences to experience art in a new light. The interplay between isometrical forms and artistic expression showcases the versatility of this concept across various domains.In conclusion, the term isometrical encapsulates a fundamental principle that transcends multiple disciplines. Whether in mathematics, architecture, computer graphics, or art, the ability to maintain dimensional integrity during transformations is essential. By grasping the significance of isometrical properties, we can enhance our understanding of the world around us, appreciate the beauty of symmetry, and apply these principles creatively in various fields. The exploration of isometrical concepts not only enriches our knowledge but also inspires innovation and creativity in our endeavors.
在数学和物理的领域中,术语isometrical指的是在变换下保持其维度的图形或空间的特性。这个概念在几何、建筑甚至计算机图形学等各个领域都至关重要。理解isometrical属性使我们能够欣赏形状如何在不改变其基本特征的情况下进行操作。例如,当我们想到一个立方体时,它的边缘具有特定的长度,如果我们在空间中旋转或平移这个立方体,其isometrical特性确保边缘的长度保持不变。在几何中,isometrical变换包括旋转、平移和反射等操作。这些变换是重要的,因为它们帮助我们理解对称性和全等性。例如,当两个三角形被称为全等时,它们具有相同的形状和大小,这意味着它们彼此isometrical。这一属性不仅限于二维形状;它还扩展到三维对象。当我们分析三维对象的isometrical属性时,我们可以应用类似的原则来理解这些对象在空间中的相互关系。在建筑中,isometrical设计的概念至关重要。建筑师通常利用isometrical图纸在二维平面上表示三维结构。这种技术使他们能够传达深度和透视,同时保持准确的比例。通过使用isometrical投影,建筑师可以创建视觉表示,帮助客户和利益相关者在施工开始之前可视化最终产品。这一做法不仅有助于沟通,还促进了在过程早期识别潜在设计缺陷。此外,在计算机图形学领域,isometrical渲染技术被用于创建视觉上吸引人的图像和动画。例如,视频游戏通常使用isometrical视角来让玩家全面了解游戏世界。这种方法提供了一种独特的视角,增强了游戏体验,同时保持角色和环境的isometrical完整性。通过isometrical图形,开发者可以创造出引人入胜的体验,以视觉上引人注目的方式吸引玩家。isometrical关系的理解也超越了技术学科。在艺术中,艺术家可能会探索isometrical概念,创造出挑战观众对空间和形式感知的作品。通过操控维度和视角,艺术家可以唤起情感并激发思考,让观众以新的视角体验艺术。isometrical形式与艺术表现之间的相互作用展示了这一概念在各个领域的多样性。总之,术语isometrical概括了一个跨越多个学科的基本原则。无论是在数学、建筑、计算机图形学还是艺术中,在变换过程中保持维度完整性的能力都是至关重要的。通过掌握isometrical属性的重要性,我们可以增强对周围世界的理解,欣赏对称之美,并在各个领域创造性地应用这些原则。对isometrical概念的探索不仅丰富了我们的知识,而且激励了我们在事业上的创新和创造力。