autotrophs
简明释义
n. [生物]自养生物(autotroph 的复数)
英英释义
Autotrophs are organisms that produce their own food from inorganic substances, using light or chemical energy. | 自养生物是指能够利用无机物质,通过光能或化学能合成自身食物的生物。 |
单词用法
化能自养生物 | |
光合自养生物 | |
自养营养 | |
自养生物 |
同义词
生产者 | Autotrophs are often referred to as producers in an ecosystem. | 自养生物通常被称为生态系统中的生产者。 | |
自养生物 | Self-feeders like plants convert sunlight into energy through photosynthesis. | 像植物这样的自养生物通过光合作用将阳光转化为能量。 |
反义词
异养生物 | Heterotrophs obtain their energy by consuming other organisms. | 异养生物通过消耗其他生物来获取能量。 | |
腐生生物 | Saprotrophs play a crucial role in decomposing organic matter. | 腐生生物在分解有机物方面发挥着重要作用。 |
例句
1.Producers are often referred to as being in the first trophic level and are called autotrophs by the heterotrophs.
生产者通常被称为第一营养级,被异养称为自养。
2.Autotroph: an organism capable of synthesizing its own food from inorganic substances using light or chemical energy. green plants algae and certain bacteria are autotrophs.
自养生物:一种能够从无机物质如光或化学能量中合成出自身食物的有机体。绿色植物,海藻及某些细菌都是自养生物。
3.An organism capable of synthesizing its own food from inorganic substances, using light or chemical energy. Green plants, algae, and certain bacteria are autotrophs.
自养生物一种能够从无机物质如光或化学能量中合成出自身食物的有机体。绿色植物,海藻及某些细菌都是。
4.Tubes within each device pump air bubbles through to support the autotrophs. This also circulates the sewage to feed the bacteria.
设备内的水管使气泡穿过设备,为自养生物提供养分,同时使污水循环,为细菌提供养分。
5.The nitrifying bacteria are chemosynthetic autotrophs.
硝化细菌是化能合成的自养生物。
6.Autotroph: an organism capable of synthesizing its own food from inorganic substances using light or chemical energy. green plants algae and certain bacteria are autotrophs.
自养生物:一种能够从无机物质如光或化学能量中合成出自身食物的有机体。绿色植物,海藻及某些细菌都是自养生物。
7.Most autotrophs, such as plants, use the energy of sunlight to turn air into simple sugars—a process known as photosynthesis.
大多数自养,如植物,利用阳光的能量把空气成简单的糖,一个过程称为光合作用。
8.The fixation of CO2 carried out by these autotrophs, in addition to ATP, requires reduced pyridine nucleotide.
除atp外,由这些自养生物进行的CO2固定,需要还原的吡啶核苷酸。
9.The batch activated sludge method was used to determine autotrophs maximum growth rate. In addition, affecting factors were also investigated.
采用间歇式活性污泥法测定了自养细菌最大增长速率,分析了测定过程中的影响因素。
10.Plants, as autotrophs, are capable of producing their own food through photosynthesis.
植物作为自养生物,能够通过光合作用自行生产食物。
11.Without autotrophs, such as algae and plants, the planet would lack a source of oxygen.
没有像藻类和植物这样的自养生物,地球将缺乏氧气来源。
12.Bacteria that can perform chemosynthesis are also considered autotrophs.
能够进行化学合成的细菌也被视为自养生物。
13.Some autotrophs can thrive in extreme environments, like deep-sea hydrothermal vents.
一些自养生物能够在极端环境中生存,比如深海热喷口。
14.In an ecosystem, autotrophs form the base of the food chain, supporting all other life forms.
在生态系统中,自养生物形成食物链的基础,支持所有其他生命形式。
作文
In the vast and intricate web of life on Earth, organisms can be categorized based on how they obtain their energy and nutrients. Among these categories, one of the most fascinating groups is that of autotrophs. 自养生物 are organisms that can produce their own food using light, water, carbon dioxide, or other chemicals. This ability sets them apart from heterotrophs, which rely on consuming other organisms for sustenance. Understanding autotrophs is essential for grasping the fundamentals of ecology and the flow of energy in ecosystems.The most common examples of autotrophs are plants, algae, and certain bacteria. These organisms utilize photosynthesis, a process that converts sunlight into chemical energy. During photosynthesis, autotrophs absorb sunlight through chlorophyll, a green pigment found in their cells. They then use this energy to transform carbon dioxide from the air and water from the soil into glucose, a simple sugar that serves as their primary energy source. This not only sustains the autotrophs themselves but also forms the foundation of the food chain, supporting countless other life forms.In addition to photosynthetic autotrophs, there are also chemosynthetic autotrophs, which derive energy from chemical reactions involving inorganic substances. These organisms are often found in extreme environments, such as deep-sea hydrothermal vents, where sunlight cannot penetrate. Chemosynthetic autotrophs play a crucial role in these ecosystems by converting inorganic compounds, like hydrogen sulfide, into organic matter, thus supporting diverse communities of organisms that thrive in these harsh conditions.The significance of autotrophs extends beyond their role in food production. They are vital for maintaining the balance of gases in our atmosphere. Through the process of photosynthesis, autotrophs consume carbon dioxide, a greenhouse gas, and release oxygen as a byproduct. This not only helps mitigate climate change but also provides the oxygen necessary for the survival of most living organisms on the planet. Without autotrophs, life as we know it would not be possible.Furthermore, autotrophs contribute to soil health and fertility. As they grow, they help to stabilize the soil, prevent erosion, and support a diverse range of microorganisms that are essential for nutrient cycling. The decomposition of plant material adds organic matter to the soil, enriching it and making it more conducive to the growth of other plants. This interconnectedness highlights the importance of autotrophs in sustaining healthy ecosystems.In conclusion, autotrophs are remarkable organisms that play a fundamental role in the Earth's ecosystems. Their ability to produce their own food through photosynthesis or chemosynthesis not only sustains themselves but also supports a myriad of other life forms. By understanding the importance of autotrophs, we can better appreciate the delicate balance of nature and the essential services these organisms provide. Protecting and preserving autotrophs and their habitats is crucial for ensuring the health of our planet and the future of all living beings.
在地球上复杂而广泛的生命网络中,生物可以根据它们获取能量和营养的方式进行分类。在这些类别中,最引人入胜的群体之一是自养生物。自养生物是能够利用光、水、二氧化碳或其他化学物质自行生产食物的生物。这种能力使它们与依赖消费其他生物维持生存的异养生物区别开来。理解自养生物对于掌握生态学的基本知识和生态系统中能量流动至关重要。最常见的自养生物例子是植物、藻类和某些细菌。这些生物利用光合作用,这一过程将阳光转化为化学能。在光合作用过程中,自养生物通过其细胞中的绿色色素叶绿素吸收阳光。然后,它们利用这种能量将空气中的二氧化碳和土壤中的水转化为葡萄糖,这是一种作为主要能量来源的简单糖。这不仅维持了自养生物自身的生存,也形成了食物链的基础,支持着无数其他生命形式。除了光合自养生物,还有化能合成自养生物,它们从涉及无机物质的化学反应中获取能量。这些生物通常在极端环境中发现,比如深海热泉,阳光无法穿透。在这些生态系统中,化能合成自养生物通过将无机化合物(如硫化氢)转化为有机物,发挥着至关重要的作用,从而支持在这些恶劣条件下繁衍生息的多样化生物群落。自养生物的重要性超越了它们在食物生产中的角色。它们对维持我们大气中气体的平衡至关重要。通过光合作用,自养生物消耗二氧化碳(一种温室气体),并释放氧气作为副产品。这不仅有助于减缓气候变化,还提供了大多数生物生存所必需的氧气。如果没有自养生物,我们所知的生命将无法存在。此外,自养生物还对土壤健康和肥力做出贡献。当它们生长时,有助于稳定土壤,防止侵蚀,并支持各种微生物的多样性,这些微生物对养分循环至关重要。植物材料的分解增加了土壤中的有机物,使其更加适合其他植物的生长。这种相互联系突显了自养生物在维持健康生态系统中的重要性。总之,自养生物是令人惊叹的生物,在地球生态系统中发挥着基础性作用。它们通过光合作用或化能合成产生自身食物的能力,不仅维持了自身的生存,也支持了无数其他生命形式。通过理解自养生物的重要性,我们可以更好地欣赏自然的微妙平衡以及这些生物所提供的基本服务。保护和维护自养生物及其栖息地对确保我们星球的健康和所有生物的未来至关重要。