aerostatics
简明释义
英[ˌeərəˈstætɪks]美[ˌeroʊˈstætɪks]
n. [流] 空气静力学;[流] 气体静力学;航空学
英英释义
Aerostatics is the branch of physics that deals with the study of gases at rest and the forces and pressures associated with them. | 气体静力学是物理学的一个分支,研究静止气体及其相关的力和压力。 |
单词用法
气体静力学理论 | |
气体静力学的应用 | |
气体静力学与流体动力学 | |
气体静力学基础 | |
气体静力学原理 | |
气体静力学气球 | |
气体静力学研究 | |
气体静力学应用 |
同义词
反义词
例句
1.It is shown that the cable wind load affects remarkably the aerostatics of long-span suspension Bridges, but its effect on the aerodynamic stability becomes negligible.
结果表明:缆索风荷载对悬索桥静风效应的影响比较显著,但对于空气动力稳定性则没有影响。
2.It is shown that the cable wind load affects remarkably the aerostatics of long-span suspension Bridges, but its effect on the aerodynamic stability becomes negligible.
结果表明:缆索风荷载对悬索桥静风效应的影响比较显著,但对于空气动力稳定性则没有影响。
3.In aerostatics, the buoyant force must equal the weight of the object for it to float.
在气体静力学中,浮力必须等于物体的重量才能浮起。
4.Engineers apply principles of aerostatics when creating airships.
工程师在制造飞艇时应用气体静力学的原理。
5.The study of aerostatics is crucial for designing hot air balloons.
对气体静力学的研究对于设计热气球至关重要。
6.The aerostatics of a balloon determines how high it can ascend.
气球的气体静力学决定了它能升多高。
7.Understanding aerostatics helps in predicting the behavior of lighter-than-air crafts.
理解气体静力学有助于预测轻于空气的飞行器的行为。
作文
The field of aerostatics is a fascinating branch of physics that deals with the behavior of gases at rest. This discipline plays a crucial role in understanding how lighter-than-air vehicles, such as balloons and airships, operate. The principles of aerostatics are rooted in the concepts of buoyancy and pressure. When a gas is heated, it expands and becomes less dense than the surrounding air, allowing it to rise. This phenomenon can be observed in everyday life, such as when a hot air balloon ascends into the sky. One of the key equations in aerostatics is Archimedes' principle, which states that any object submerged in a fluid experiences an upward force equal to the weight of the fluid displaced. This principle not only applies to liquids but also to gases, making it essential for the design and operation of various aerostatic vehicles. Understanding this principle allows engineers and scientists to calculate the necessary volume of gas required to lift a specific weight, ensuring safe and effective flight.Moreover, aerostatics is closely related to the study of atmospheric pressure. As altitude increases, atmospheric pressure decreases, which affects the performance of lighter-than-air crafts. For instance, at higher altitudes, a hot air balloon may require more heat to maintain its buoyancy due to the reduced density of the surrounding air. This interplay between temperature, pressure, and volume is governed by the ideal gas law, which is fundamental in the study of aerostatics.In addition to practical applications, aerostatics also has significant implications in scientific research. Weather balloons, for example, are used to gather data about atmospheric conditions at various altitudes. These balloons ascend to great heights, collecting information on temperature, humidity, and wind patterns, which is crucial for meteorology and climate studies. The principles of aerostatics enable these balloons to rise steadily and reach their designated altitudes without bursting or losing their cargo.Furthermore, the advancements in materials science have led to the development of lighter and stronger materials that enhance the capabilities of aerostatic vehicles. Modern airships utilize advanced fabrics and helium gas, which is non-flammable and provides greater lift compared to hydrogen. This evolution in technology demonstrates how the principles of aerostatics continue to influence innovation in aviation and transportation.In conclusion, aerostatics is a vital area of study that combines physics, engineering, and environmental science. Its principles are not only essential for the design and operation of lighter-than-air vehicles but also play a critical role in various scientific applications. As we continue to explore the skies and develop new technologies, the understanding of aerostatics will remain integral to our advancements in flight and exploration. The ability to manipulate gases and understand their behavior opens up numerous possibilities for future innovations in aerial transportation and atmospheric research.
气体静力学(aerostatics)是物理学的一个迷人分支,涉及静止气体的行为。这个学科在理解气球和飞艇等轻于空气的飞行器如何运作方面发挥着至关重要的作用。气体静力学的原理根植于浮力和压力的概念。当气体被加热时,它会膨胀并变得比周围空气的密度小,从而使其上升。这种现象在我们的日常生活中可以观察到,比如热气球升空时。气体静力学中的一个关键方程是阿基米德原理,该原理指出,任何浸没在流体中的物体都会受到一个向上的力,这个力等于所排开流体的重量。这个原理不仅适用于液体,还适用于气体,因此对于各种气体静力学飞行器的设计和操作至关重要。理解这一原理使工程师和科学家能够计算出提升特定重量所需的气体体积,从而确保安全有效的飞行。此外,气体静力学与大气压力的研究密切相关。随着高度的增加,大气压力降低,这影响着轻于空气的飞行器的性能。例如,在更高的高度,热气球可能需要更多的热量来维持其浮力,因为周围空气的密度降低。这种温度、压力和体积之间的相互作用受到理想气体定律的支配,而理想气体定律在气体静力学的研究中是基础。除了实际应用外,气体静力学在科学研究中也具有重要意义。例如,气象气球用于收集不同高度的大气条件数据。这些气球升到高空,收集温度、湿度和风速等信息,这对气象学和气候研究至关重要。气体静力学的原理使这些气球能够稳定上升,并在不爆炸或失去货物的情况下达到指定高度。此外,材料科学的进步导致了更轻、更强的材料的发展,这增强了气体静力学飞行器的能力。现代飞艇利用先进的面料和氦气,氦气是非易燃的,提供比氢气更大的升力。这一技术的演变表明,气体静力学的原理继续影响航空和运输领域的创新。总之,气体静力学(aerostatics)是一个重要的研究领域,结合了物理学、工程学和环境科学。它的原理不仅对轻于空气的飞行器的设计和操作至关重要,而且在各种科学应用中也发挥着关键作用。随着我们继续探索天空并开发新技术,对气体静力学的理解将始终是我们在飞行和探索中进步的重要组成部分。操控气体和理解其行为的能力为未来的航空运输和大气研究的创新打开了无数可能性。