chalcogenide
简明释义
英['kælkədʒənaɪd]美['kælkədʒənaɪd]
n. 氧属化物;硫族化物
英英释义
A chalcogenide is a compound formed between a chalcogen element (such as sulfur, selenium, or tellurium) and a more electropositive element. | 硫族化物是由硫、硒或碲等硫族元素与更具电正性的元素形成的化合物。 |
单词用法
金属硫族化物 | |
硫族化物半导体 | |
过渡金属硫族化物 | |
硫族化物的合成 | |
硫族化物的性质 | |
硫族化物的应用 |
同义词
硫化物 | 硫化物常用于半导体应用。 | ||
硒化物 | 硒化物可以表现出有趣的光学特性。 | ||
碲化物 | 碲化物以其热电特性而闻名。 |
反义词
金属 | 金属通常是良好的电导体。 | ||
非金属 | Non-metals can be found in various forms, including gases and solids. | 非金属可以以气体和固体的形式存在。 |
例句
1.Under light irradiation, especially, Amorphous chalcogenide semiconductor have many photo-induced effects which are applied widely in many major, including optical waveguide, optoelectr.
硫系非晶态半导体材料在近远红外域有很好的透光性,具有较低的本征损耗,以及有制备光波导的优点等。
2.The development and application of chalcogenide glasses as an IR transmitting material with high performance have long been impeded by insufficient degree of purity present in glasses.
高性能透红外硫系玻璃材料的开发和应用在很大程度上受到杂质对透过性能影响的制约。
3.A phase change memory formed by a plurality of phase change memory devices having a chalcogenide memory region (28) extending over an own heater (26).
一种由多个具有在自身的加热体(26)上方延伸的硫属化物存储区(28)的相变存储器件形成的相变存储器。
4.In this paper, it was studied on the dispersion characteristics of chalcogenide fiber in detail.
本文对目前红外光纤研究的热点-硫系光纤独特的色散特性进行理论分析。
5.Passive applications of chalcogenide glass fibers in the infrared are described specifically for optical sensing of chemical species.
并具体阐述了硫系玻璃光纤在红外波段的被动化学传感应用。
6.A new chalcogenide glass system containing higher content of alkali metal ions was developed.
开发了有高含量碱金属离子的新型硫化物玻璃。
7.Chalcogenide glasses are novel materials with very intriguing properties for a variety of photonic applications.
而硫系玻璃正是一种有着许多迷人性能的新型光学材料。
8.The optical properties of chalcogenide 硫族化合物 make them suitable for applications in photonics.
由于其光学特性,chalcogenide 硫族化合物适合用于光子学应用。
9.Researchers are exploring the use of chalcogenide 硫族化合物 in the development of next-generation memory devices.
研究人员正在探索在下一代存储设备开发中使用chalcogenide 硫族化合物的可能性。
10.The synthesis of chalcogenide 硫族化合物 can be achieved through various chemical methods.
可以通过多种化学方法合成chalcogenide 硫族化合物。
11.The research team discovered a new type of chalcogenide 硫族化合物 that exhibits superconducting properties at higher temperatures.
研究团队发现了一种新的类型的chalcogenide 硫族化合物,在更高的温度下表现出超导特性。
12.In semiconductors, chalcogenides 硫族化合物 are often used to improve the efficiency of solar cells.
在半导体中,chalcogenides 硫族化合物通常用于提高太阳能电池的效率。
作文
In the realm of materials science, the term chalcogenide refers to a class of compounds that contain one or more chalcogen elements, specifically sulfur, selenium, and tellurium. These elements are known for their unique properties and play a significant role in various applications, particularly in electronics and photonics. The study of chalcogenides has garnered much attention due to their potential in developing new technologies, such as solar cells, sensors, and transistors. The significance of chalcogenides lies in their ability to form a wide range of compounds with different metals, leading to diverse material characteristics. For instance, when combined with transition metals like copper or zinc, chalcogenides can exhibit semiconducting properties, which are crucial for electronic devices. Cadmium selenide (CdSe) and lead sulfide (PbS) are two well-known examples of chalcogenide semiconductors that have been extensively researched and utilized in optoelectronic applications.One of the most exciting aspects of chalcogenides is their tunable bandgap. By altering the composition and structure of these materials, scientists can engineer their electronic and optical properties to suit specific needs. This tunability makes chalcogenides ideal candidates for applications in photovoltaics, where the efficiency of solar energy conversion can be significantly improved. For example, thin-film solar cells made from chalcogenide materials have shown promising efficiencies, making them a focal point in renewable energy research.Moreover, chalcogenides are also being explored for their potential in memory storage devices. Phase-change memory (PCM), which utilizes the unique phase transitions of chalcogenide materials, offers faster read and write speeds compared to traditional flash memory. This innovation could revolutionize data storage technology, providing higher performance and greater durability.In addition to their electronic applications, chalcogenides have also been investigated for their optical properties. Certain chalcogenide glasses and crystals can exhibit non-linear optical effects, making them suitable for use in laser technology and telecommunications. The ability to manipulate light at the nanoscale through chalcogenide materials opens up new avenues for advancements in photonic devices, including waveguides and modulators.Despite the promising applications of chalcogenides, there are still challenges that need to be addressed. The stability and scalability of these materials in industrial processes remain areas of active research. Furthermore, understanding the fundamental mechanisms that govern their properties is crucial for optimizing their performance in practical applications.In conclusion, chalcogenides represent a fascinating area of study within materials science, with their unique properties paving the way for innovations in electronics, photonics, and energy technologies. As research continues to evolve, the potential of chalcogenides to contribute to sustainable solutions and advanced technologies becomes increasingly evident. The future of chalcogenides holds great promise, and their impact on various fields will likely be profound, making them a topic worthy of further exploration and investment.
在材料科学领域,术语chalcogenide指的是一类含有一种或多种硫族元素的化合物,特别是硫、硒和碲。这些元素以其独特的性质而闻名,并在各种应用中发挥重要作用,特别是在电子和光子学领域。由于其在开发新技术中的潜力,如太阳能电池、传感器和晶体管,对chalcogenides的研究引起了广泛关注。Chalcogenides的重要性在于它们能够与多种金属形成广泛的化合物,从而导致多样的材料特性。例如,当与铜或锌等过渡金属结合时,chalcogenides可以表现出半导体特性,这对电子设备至关重要。硒化镉(CdSe)和硫化铅(PbS)是两个众所周知的chalcogenide半导体,它们已被广泛研究并用于光电应用。Chalcogenides最令人兴奋的方面之一是它们可调的带隙。通过改变这些材料的组成和结构,科学家可以工程化它们的电子和光学特性,以满足特定需求。这种可调性使得chalcogenides成为光伏应用的理想候选者,其中太阳能转换效率可以显著提高。例如,采用chalcogenide材料制成的薄膜太阳能电池显示出良好的效率,使其成为可再生能源研究的重点。此外,chalcogenides还被探索用于存储设备的潜力。相变存储(PCM)利用chalcogenide材料独特的相变,提供比传统闪存更快的读写速度。这一创新可能会彻底改变数据存储技术,提供更高的性能和更大的耐用性。除了电子应用,chalcogenides还被研究其光学特性。某些chalcogenide玻璃和晶体可以表现出非线性光学效应,使其适用于激光技术和电信。通过chalcogenide材料在纳米尺度上操纵光的能力为光子设备的进步开辟了新的途径,包括波导和调制器。尽管chalcogenides的应用前景广阔,但仍然存在需要解决的挑战。这些材料在工业过程中的稳定性和可扩展性仍然是积极研究的领域。此外,理解支配其特性的基本机制对于优化其在实际应用中的性能至关重要。总之,chalcogenides代表了材料科学中一个引人入胜的研究领域,其独特的性质为电子、光子和能源技术的创新铺平了道路。随着研究的不断发展,chalcogenides对可持续解决方案和先进技术的贡献潜力日益明显。Chalcogenides的未来充满希望,它们对各个领域的影响将可能深远,使其成为值得进一步探索和投资的主题。